
O
nce upon a time Achilles met a
tortoise in the road. The tor-
toise, whose mind was quicker

than his feet, challenged the swift hero
to a race. Amused, Achilles accepted.
The tortoise asked if he might have a
head start, as he was truly much slow-
er than the demigod. Achilles agreed
happily, and so the tortoise started oÝ.
After taking quite a bit of time to fasten
one of his sandalÕs ankle straps, Achil-
les bolted from the starting line. In no
time at all, he ran half the distance that
separated him from the tortoise. With-
in another blink, he had covered three
quarters of the stretch. In another in-
stant, he made up seven eighths and in
another, Þfteen sixteenths. But no mat-
ter how fast he ran, a fraction of the
distance remained. In fact, it appeared
that the hero could never overtake the
plodding tortoise.

Had Achilles spent less time in the
gym and more time studying philoso-
phy, he would have known that he was
acting out the classic example used to il-
lustrate one of ZenoÕs paradoxes, which
argue against the possibility of all mo-
tion. Zeno designed the paradox of
Achilles and the tortoise, and its com-
panion conundra (more about them lat-
er), to support the philosophical theo-
ries of his teacher, Parmenides. 

Both men were citizens of the Greek
colony of Elea in southern Italy. In ap-
proximately 445 B.C., Parmenides and
Zeno met with Socrates in Athens to ex-
change ideas on basic philosophical 
issues. The event, one of the greatest
recorded intellectual encounters (if it
really took place), is commemorated in
PlatoÕs dialogue Parmenides. Parmen-
ides, a distinguished thinker nearly 65
years old, presented to the young Soc-
rates a startling thesis: ÒrealityÓ is an
unchanging single entity, seamless in
its unity. The physical world, he argued,
is monolithic. In particular, motion is
not possible. Although the rejection of
plurality and change appears idiosyn-
cratic, it has, in general outline, proved
attractive to numerous scholars. For ex-
ample, the Òabsolute idealismÓ of the
Oxford philosopher F. H. Bradley (1846Ð 
1924) has points in common with the
Parmenidean outlook.

This portrayal of the world is contrary
to our everyday experience and rele-
gates our most fundamental percep-
tions to the realm of illusion. Parmen-
ides relied on ZenoÕs powerful argu-
ments, which were later recorded in the
writings of Aristotle, to support his case.
For two and a half millennia, ZenoÕs
paradoxes have provoked debates and
stimulated analyses. At last, using a
formulation of calculus that was devel-
oped in just the past decade or so, it is
possible to resolve ZenoÕs paradoxes.
The resolution depends on the concept
of inÞnitesimals, known since ancient
times but until recently viewed by many
thinkers with skepticism.

T
he tale of Achilles and the tortoise
depicts one of ZenoÕs paradoxes,
usually denoted ÒThe Dichoto-

myÓ: any distance, such as that between
the two contenders, over which an ob-
ject must traverse can be halved (1 Ú 2,
1 Ú 4, 1 Ú 8 and so on) into an inÞnite num-
ber of spatial segments, each represent-
ing some distance yet to be traveled.
As a result, Zeno asserts that no motion
can be completed because some dis-

tance, no matter how small, always re-
mains. It is important to note that he
does not say that inÞnitely many stretch-
es cannot add up to a Þnite distance
(glancing at the geometry of an inÞ-
nitely partitioned line shows immedi-
ately, without any sophisticated calcula-
tions, that an inÞnite number of pieces
sum to a Þnite interval). Rather the force
of ZenoÕs objection to the idea of mo-
tion comes from the obligation to ex-
plain how an inÞnite number of actsÑ
crossing one intervalÑcan be serially
completed.

Zeno made a second attack on the
conceptual underpinnings of motion
by viewing this Þrst argument from a
slightly diÝerent perspective. His sec-
ond paradox is as follows: Before an
object, say, an arrow, gets to the half-
way mark of its supposed journey (an
achievement granted in the preceding
case), it must Þrst travel a quarter of
the distance. As in ZenoÕs Þrst objec-
tion, this reasoning can be continued
indeÞnitely to yield an inÞnite regress,
thus leading to his insistence that mo-
tion could never be initiated.

ZenoÕs third paradox takes a diÝerent
tack altogether. It asserts that the very
concept of motion is empty of content.
Zeno invites us to consider the arrow
at any one instant of its ßight. At this
point in time, the arrow occupies a re-
gion of space equal to its length, and no
motion whatsoever is evident. Because
this observation is true at every instant,
the arrow is never in motion. This ob-
jection, in a historical sense, proved
the most troublesome for would-be
explainers of ZenoÕs paradoxes.

Many philosophers and mathemati-
cians have made various attempts to
answer ZenoÕs objections. The most di-
rect approach has simply been to deny
that a problem exists. For example, Jo-
hann Gottlieb Waldin, a German profes-
sor of philosophy, wrote in 1782 that
the Eleatic, in arguing against motion,
assumed that motion exists. Evidently
the good professor was not acquainted
with the form of argument known as
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reductio ad absurdum: assume a state
of aÝairs and then show that it leads to
an illogical conclusion.

Nevertheless, other scholars made
progress by wrestling with how an in-
Þnite number of actions might occur in
the physical world. Their explanations
have continually been intertwined with
the idea of an inÞnitesimal, an interval
of space or time that embodies the
quintessence of smallness. An inÞni-
tesimal quantity, some surmised, would
be so very near zero as to be numeri-
cally impotent; such quantities would
elude all measurement, no matter how
precise, like sand through a sieve.

Giovanni Benedetti (1530Ð1590), a
predecessor of Galileo, postulated that
when an object appeared to be frozen
in midair to Zeno, he was in fact seeing
only part of the action, as though one
were watching a slide show instead of a
movie. Between the static images Zeno
saw were inÞnitesimally small instants
of time in which the object moved by
equally small distances. 

Others sidestepped the issue by ar-
guing that intervals in the physical world
cannot simply be subdivided an inÞnite
number of times. Friedrich Adolf Tren-
delenburg (1802Ð1872) of the Universi-
ty of Berlin built an entire philosophical
system that explained human percep-
tions in terms of motion. In doing so,
he freed himself from explaining mo-
tion itself.

Similarly, in this century, the English
philosopher and mathematician Alfred
North Whitehead (1861Ð1947) con-
structed a system of metaphysics based
on change, in which motion was a spe-
cial case. Whitehead responded to
ZenoÕs objections by insisting that
events in the physical world had to
have some extent; namely, they could
not be pointlike. Likewise, the Scottish
philosopher David Hume (1711Ð1776)
wrote, ÒAll the ideas of quantity upon
which mathematicians reason, are noth-
ing but particular, and such as are sug-
gested by the senses and imagination
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FALLING APPLE? Zeno would argue that
because the apple appears to be frozen
in midair at each instant of its sup-
posed descent, it is never in motion.
Moreover, Zeno would assert that there
is no proof that the apple will ever reach
the ground. Before it arrives there, it
must first fall half of the distance be-
tween the manÕs hand and the ground.
After that, it must fall half of the re-
maining distance and half of that again,
and so on. How can it be that some frac-
tional distance does not always remain
between the apple and the ground? Us-
ing similar logic, Zeno would question
whether an apple can even begin to fall.
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and consequently, cannot be inÞnitely
divisible.Ó

Either way, the subject of inÞnitesi-
mals (and whether they exist or not)
generated a long and acrimonious liter-
ature of its own. Until recently, most
mathematicians thought them to be a
chimera. The Irish bishop George Ber-
keley (1685Ð1753) is noted principally
for his idealistic theory, which denied
the reality of matter, but he, too, wres-
tled with inÞnitesimals. He believed
them ill conceived by the mathemati-
cians of the time, including Newton.
ÒThey are neither Þnite quantities, nor
quantities inÞnitely small, nor yet noth-
ing. May we not call them ghosts of de-
parted quantities?Ó He observed fur-
ther: ÒWhatever mathematicians may
think of ßuxions [rates of change], or
the diÝerential calculus, and the like, a
little reßexion will shew them that, in
working by those methods, they do not
conceive or imagine lines or surfaces
less than what are perceivable to sense.Ó

Indeed, mathematicians found inÞn-
itesimals hard to skirt in the course of
their discoveries, no matter how dis-
tasteful they found them in theory.
Some historians believe the great Archi-
medes (circa 287Ð212 B.C.) achieved
some of his mathematical results using
inÞnitesimals but employed more con-
ventional modes for public presenta-

tions. InÞnitesimals left their mark dur-
ing the 17th and 18th centuries as well
in the development of diÝerential and
integral calculus. Elementary textbooks
have long appealed to Òpractical inÞ-
nitesimalsÓ to convey certain ideas in
calculus to students.

When analysts thought about rigor-
ously justifying the existence of these
small quantities, innumerable diÛcul-
ties arose. Eventually, mathematicians
of the 19th century invented a techni-
cal substitute for inÞnitesimals: the so-
called theory of limits. So complete was
its triumph that some mathematicians
spoke of the ÒbanishmentÓ of inÞnites-
imals from their discipline. By the
1960s, though, the ghostly tread of in-
Þnitesimals in the corridors of mathe-
matics became quite real once more,
thanks to the work of the logician Abra-
ham Robinson of Yale University [see
ÒNonstandard Analysis,Ó by Martin Da-
vis and Reuben Hersh; SCIENTIFIC AMER-
ICAN, June 1972]. Since then, several
methods in addition to RobinsonÕs ap-
proach have been devised that make
use of inÞnitesimals.

W
hen my colleague Sylvia Miller
and I started our work on
ZenoÕs paradoxes, we had the

advantage that inÞnitesimals had be-
come mathematically respectable. We

were intuitively drawn to these objects
because they seem to provide a micro-
scopic view of the details of motion.
Edward Nelson of Princeton University
created the tool we found most valu-
able in our attack, a brand of nonstan-
dard analysis known by the rather arid
name of internal set theory (IST). Nel-
sonÕs method produces startling inter-
pretations of seemingly familiar math-
ematical structures. The results are
similar, in their strangeness, to the
structures of quantum theory and gen-
eral relativity in physics. Because these
two theories have taken the better part
of a century to gain widespread accep-
tance, we can only admire the power of
NelsonÕs imagination.

Nelson adopted a novel means of
deÞning inÞnitesimals. Mathematicians
typically expand existing number sys-
tems by tacking on objects that have
desirable properties, much in the same
way that fractions were sprinkled be-
tween the integers. Indeed, the number
system employed in modern mathe-
matics, like a coral reef, grew by accre-
tion onto a supporting base: ÒGod made
the integers, all the rest is the work of
man,Ó declared Leopold Kronecker
(1823Ð1891). Instead the way of IST is
to ÒstareÓ very hard at the existing num-
ber system and note that it already con-
tains numbers that, quite reasonably,
can be considered inÞnitesimals.

Technically, Nelson Þnds nonstan-
dard numbers on the real line by add-
ing three rules, or axioms, to the set of
10 or so statements supporting most
mathematical systems. (Zermelo-Fraen-
kel set theory is one such foundation.)
These additions introduce a new term,
standard, and help us to determine
which of our old friends in the number
system are standard and which are non-
standard. Not surprisingly, the inÞnites-
imals fall in the nonstandard category,
along with some other numbers I will
discuss later.

Nelson deÞnes an inÞnitesimal as a
number that lies between zero and ev-
ery positive standard number. At Þrst,
this might not seem to convey any par-
ticular notion of smallness, but the
standard numbers include every con-
crete number (and a few others) you
could write on a piece of paper or gen-
erate in a computer: 10, pi, 1 Ú 1000 and
so on. Hence, an inÞnitesimal is greater
than zero but less than any number,
however small, you could ever conceive
of writing. It is not immediately appar-
ent that such inÞnitesimals do indeed
exist, but the conceptual validity of IST
has been demonstrated to a degree
commensurate with our justiÞed belief
in other mathematical systems. 

Still, inÞnitesimals are truly elusive
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RACE between Achilles and the tortoise illustrates one of ZenoÕs paradoxes. Achilles
gives the tortoise a head start. He must then make up half the distance between
them, then three fourths, then seven eighths and so on, ad inÞnitum. In this way, it
would seem he could never come abreast of the sluggish animal.
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entities. Their elusiveness rests on the
mathematical fact that two concrete
numbersÑthose having numerical con-
tentÑcannot differ by an inÞnitesimal
amount. The proof, by reductio ad ab-
surdum, is easy: the arithmetic diÝer-
ence between two concrete numbers
must be concrete (and hence, standard).
If this diÝerence were inÞnitesimal, the
deÞnition of an inÞnitesimal as less
than all standard numbers would be vi-
olated. The consequence of this fact is
that both end points of an inÞnitesimal
interval cannot be labeled using con-
crete numbers. Therefore, an inÞnitesi-
mal interval can never be captured
through measurement; inÞnitesimals
remain forever beyond the range of 
observation.

S
o how can these phantom num-
bers be used to refute ZenoÕs para-
doxes? From the above discus-

sion it is clear that the points of space
or time marked with concrete numbers
are but isolated points. A trajectory and
its associated time interval are in fact
densely packed with inÞnitesimal re-
gions. As a result, we can grant ZenoÕs
third objection: the arrowÕs tip is caught
ÒstroboscopicallyÓ at rest at concretely
labeled points of time, but along the
vast majority of the stretch, some kind
of motion is taking place. This motion
is immune from Zenonian criticism be-
cause it is postulated to occur inside
inÞnitesimal segments. Their ineÝabili-
ty provides a kind of screen or Þlter.

Might the process of motion inside
one of these intervals be a uniform ad-
vance across the interval or an instan-
taneous jump from one end to the oth-

er? Or could motion comprise a series
of intermediate steps or else a process
outside of time and space altogether?
The possibilities are inÞnite, and none
can be veriÞed or ruled out since an in-
Þnitesimal interval can never be moni-
tored. Credit for this rebuttal is due to
Benedetti, Trendelenburg and White-
head for their earlier insights, which can
now be formalized by means of IST.

We can answer ZenoÕs Þrst two objec-
tions more easily than we did the third,
but we need to use another mathemati-
cal fact from IST. Every inÞnite set of
numbers contains a nonstandard num-
ber. Before drawing out the Zenonian
implications of this statement, it is nec-
essary to talk about the two other types
of nonstandard numbers that are read-
ily manufactured from inÞnitesimal
numbers. First, take all the inÞnitesi-
mals, which by deÞnition are wedged
between zero and all the positive, stan-
dard numbers, and put a minus sign 
in front of each one. Now there is a
symmetrical clustering of these small
objects about zero. To create ÒmixedÓ
nonstandard numbers, take any stan-
dard number, say, one half, and add to
it each of the nonstandard inÞnitesi-
mals in the grouping around zero. This
act of addition translates the original
cluster of inÞnitesimals to positions on
either side of one half. Similarly, every
standard number can be viewed as hav-
ing its own collection of nearby, non-
standard numbers, each one only an
inÞnitesimal distance from the stan-
dard number.

The third type of nonstandard num-
ber is simply the inverse of an inÞnites-
imal. Because an inÞnitesimal is very

small, its inverse will be very large (in
the standard realm, the inverse of one
millionth is one million). This type of
nonstandard number is called an un-
limited number. The unlimited num-
bers, though large, are Þnite and hence
smaller than the truly inÞnite numbers
created in mathematics. These unlimit-
ed numbers live in a kind of twilight
zone between the familiar standard
numbers, which are Þnite, and the in-
Þnite ones.

If, as demonstrated in IST, every in-
Þnite set contains a nonstandard num-
ber, then the inÞnite series of check-
points Zeno used to gauge motion in his
Þrst argument must contain a mixed,
nonstandard number. In fact, as ZenoÕs
inÞnite series of numbers creeps closer
to one, a member of that series will
eventually be within an inÞnitesimal dis-
tance from one. At that point, all suc-
ceeding members of the series will be
nonstandard members of the cluster
about one, and neither Zeno nor anyone
else will be able to chart the progress
of a moving object in this inaccessible
region.

T
here is an element of irony in us-
ing inÞnity, ZenoÕs putative weap-
on, to deßate his claims. To re-

fute ZenoÕs Þrst paradox, we need only
state the epistemological principle that
we are not responsible for explaining
situations we cannot observe. ZenoÕs
inÞnite series of checkpoints contains
nonstandard numbers, which have no
numerical meaning, and so we reject
his argument based on these entities.
Because no one could ever, even in prin-
ciple, observe the full domain of check-
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The real numbers consist of the integers (positive and
negative whole numbers), rational numbers (those

that can be expressed as a fraction) and irrational num-
bers (those that cannot be expressed as a fraction). The
real numbers can be represented as points on a straight
line known as the real line (above). 

The mathematician Edward Nelson of Princeton Univer-
sity labeled three types of numbers as nonstandard with-
in this standard number system. Infinitesimal nonstandard
numbers are smaller than any positive standard number

yet are greater than zero. Mixed nonstandard numbers,
shown grouped around the integer 5, result from adding
and subtracting infinitesimal amounts to standard num-
bers. In fact, every standard number is surrounded by
such mixed, nonstandard neighbors. Unlimited nonstan-
dard numbers, represented as N and N + 1, are the invers-
es of infinitesimal nonstandard numbers. Each unlimited
number is greater than every standard number and yet
less than the infinite real numbers. The nonstandard real
numbers prove useful in resolving Zeno’s paradoxes.

–(N + 1) –N –3 –2 –1 0 1 2 5 N N + 1

Topology of the Real Line
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points that his objection addresses, the
objectionable behavior he postulates for
the moving object is moot. Many de-
scriptions of motion in the microrealm
other than that containing the full se-
ries of checkpoints could apply, and
just because his particular scenario
causes conceptual problems, there is
no reason to anathematize the idea of
motion. His second argument, attempt-
ing to show that an object can never
even start to move, suÝers from the
same malady as the Þrst, and we reject
it on like grounds.

W
e have resolved ZenoÕs three
paradoxes using some techni-
cal results from IST and the

principle that nonstandard numbers
are not suitable for describing matters
of fact, observed or purported. Still,
more can be said regarding the matter
than just the assurance that ZenoÕs ob-
jections do not preclude motion. In-
deed, we can construct a theory of mo-
tion using a very powerful result from
IST. The theory yields the same results
as do the tools of the calculus, and yet
it is easier to visualize and does not fall
prey to ZenoÕs objections.

A theorem proved in IST states that
there exists a Þnite set, call it F, that
contains all the standard numbers! The
corollary that there are only a Þnite

number of standard numbers would
seem to be true, but surprisingly, it is
not. In developing IST, Nelson needed
to Þnesse the conventional way mathe-
maticians form objects. A statement in
IST is called internal if it does not con-
tain the label Òstandard.Ó Otherwise, the
statement is called external. Mathema-
ticians frequently create subsets from
larger sets by predicating a quality that
characterizes each of the objects in the
subsetÑthe balls that are red or the in-
tegers that are even. In IST, however, it
is forbidden to use external predicates,
such as standard, to deÞne subsets; the
stricture is introduced to avoid contra-
dictions. For example, imagine the set
of all standard numbers in F. This set
would be Þnite because it is a subset of
a Þnite set. It would therefore have a
least member, say, r. But then r Ð 1
would be a standard number less than
r, when r was supposed to be the small-
est standard number. Thus, we cannot
say the standard numbers are Þnite or
inÞnite in extent, because we cannot
form the set of them and count them.

Nevertheless, the Þnite set F, though
constrained as to how it can be visual-
ized, is useful for constructing our the-
ory of motion. This theory can be ex-
pressed quite simply as stepping
through F, where each member of F
represents a distinct moment. For con-

venience, consider only those members
of F that fall between 0 and 1. Let time
0 be the instant when we start tracking
a moving object. The second instant
when we might try to observe the ob-
ject is at time f1, where f1 is the small-
est member of F that is greater than 0.
Ascending through F in this fashion,
we eventually reach time fn, where fn is
the largest member of F less than 1. In
one more step, we reach 1 itself, the
destination in this example. In order to
walk through a noninÞnitesimal dis-
tance, such as the span from 0 to 1 us-
ing inÞnitesimal steps, the subscript 
n of fn must be an unlimited integer.
The process of motion then is divided
into n + 1 acts, and because n + 1 is
also Þnite, this number of acts can be
completed sequentially.

Of the possible observing times iden-
tiÞed earlier, the objectÕs progress could
be reported solely at those instants
corresponding to certain standard num-
bers in F. (By the way, f1 and fn would
be nonstandard, as they are inÞnitesi-
mally close to 0 and 1, respectively.) For
example, although we can express a
standard number to any Þnite (but not
unlimited) number of decimal places
and use this approximation as a mea-
surement label, we cannot access the
unlimited tail of the expansion to alter
a digit and thus deÞne a nonstandard,
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To see the relation between
infinitesimals and differen-

tial calculus, consider the sim-
ple case of a falling stone. The
distance the stone has traveled
in feet can be calculated from
the formula s = 16t 2, where t
equals the time elapsed in sec-
onds. For example, if a stone
has fallen for two seconds, it
will have traveled 64 feet. 

Suppose, however, one wish-
es to calculate the instantane-
ous velocity of the stone. The
average speed of a moving ob-
ject equals the total distance it travels divided by the total
amount of time it takes. By using this formula over an in-
finitesimal change in the total distance and time, one can
calculate a fair approximation of an object’s instantaneous
velocity.

Let dt represent an infinitesimal change in time and ds
an infinitesimal change in distance. The computation for
the velocity of the stone after one second of travel, then,
will be as follows:  The time frame under consideration
ranges from t = 1 to t = 1 + dt. The position of the stone
during that time changes from s =16(1)2 to s = 16(1+ dt )2.
The total change in distance, 32dt + 16dt2, divided by dt,

is the desired average velocity,
32 + 16dt.

Because 16dt is but an infi-
nitesimal amount, undetectable
for all intents and purposes, it
can be considered equal to 0.
Thus, after one second of travel,
the formula yields the stone’s
instantaneous velocity as 32
feet per second.

This manipulation, of course,
resembles those used in tra-
ditional, differential calculus.
There the small residue 16dt
cannot be dropped at the end

of the calculation; it is a noninfinitesimal quantity. Instead,
in this calculus, it must be argued away using the theory
of limits. In essence, the limit process renders the interval
of length dt sufficiently small so that the average velocity
is arbitrarily close to 32. As before, the instantaneous ve-
locity of the stone after one second of travel equals 32
feet per second. Similarly, judicious use of infinitesimal re-
gions facilitates the computation of the area of complicat-
ed regions, a basic problem of integral calculus. Some
think the newer calculus is pedagogically superior to cal-
culus without infinitesimals. Nevertheless, both methods
are equally rigorous and yield identical results.

Calculus by Means of Infinitesimals
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inÞnitesimally close neighbor. Only con-
crete standard numbers are eÝective as
measurement labels; the utility of their
nonstandard neighbors for measure-
ment is illusory.

M
uch is superßuous in this theo-
ry of motion, and much is left
unsaid. It suÛces, however, in

the sense that it can easily be translat-
ed into the symbolic notation of the in-
tegral or diÝerential calculus, common-
ly used to describe the details of motion
[see box on opposite page]. More impor-
tant in the present context, the Þnite-
ness of the set F enables us to jump
over the pitfalls in ZenoÕs Þrst two para-
doxes. His third objection is dodged as
before: motion in real time is an un-
known process that takes place in in-
Þnitesimal intervals between the stan-
dard points of F; the nonstandard points
of F are irrelevant given that they can-
not be observed.

For many centuries, ZenoÕs logic stood
mostly intact, proving the refractory na-
ture of his arguments. A resolution was
made possible through two basic fea-
tures of IST: Þrst, the ability to partition
an interval of time or space into a Þnite
number of ineÝable inÞnitesimals and,
second, the fact that standardly labeled
pointsÑthe only ones that can be used
for measurementÑare isolated objects
on the real line. Is our work merely the

solution to an ancient puzzle? Possibly,
but there are several directions in which
it might prove extensible.

Aside from its mathematical value,
IST is ripe with epistemological import,
as this analysis has shown. It might
well be modiÞed to constitute a general
epistemic logic. Also, inÞnitesimal in-
tervals, or their generalization, would
promise a technical resource to house
WhiteheadÕs so-called actual entities,
the generative atoms of his philosophi-
cal system. Finally, the current theory
of motion and the predictions of quan-
tum physics are not dissimilar in that
they both restrict the observation of cer-
tain events to discrete values. Of course,
this theory of motion is not a version
of quantum mechanics (nor relativity
theory, for that matter). Because the
theory resulted from a thought experi-
ment on ZenoÕs terms, it holds no di-
rect connection to present physical the-
ory. Moreover, the speciÞc rules inher-
ited from IST are probably not those
best suited to describe reality. Modern
physics might adapt the IST approach
by modifying its rule system and intro-
ducing Òphysical constants,Ó perhaps
by assigning parameters to the set F.

But maybe not. Still, the simplicity
and elegance of such thought experi-
ments have catalyzed research through-
out the ages. Notable examples include
Heinrich W. M. Olbers, questioning why

the sky is dark at night despite stars in
every direction, or James Clerk Maxwell,
summoning a meddling, microscopic
demon to batter the second law of ther-
modynamics. Likewise, ZenoÕs argu-
ments have stimulated examinations of
our ideas about motion, time and space..
The path to their resolution has been
eventful.
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