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ABSTRACT. A version of nonstandard analysis, Internal Set Theory, has been used to
provide a resolution of Zeno’s paradoxes of motion. This resolution is inadequate because
the application of Internal Set Theory to the paradoxes requires a model of the world that
is not in accordance with either experience or intuition. A model of standard mathematics
in which the ordinary real numbers are defined in terms of rational intervals does provide a
formalism for understanding the paradoxes. This model suggests that in discussing motion,
only intervals, rather than instants, of time are meaningful. The approach presented here
reconciles resolutions of the paradoxes based on considering a finite number of acts with
those based on analysis of the full infinite set Zeno seems to require. The paper concludes
with a brief discussion of the classical and quantum mechanics of performing an infinite
number of acts in a finite time.

1. INTRODUCTION

For almost 2500 years, Zeno’s paradoxes of motion have attracted the inter-
est of philosophers, mathematicians, and scientists (see, Salmon 1970 and
Vlastos 1967 for textual and historical background). Recently McLaughlin
and Miller (hereafter, MM) published a new resolution of the paradoxes
(McLaughlin and Miller 1992; see also, McLaughlin 1994). They argue that
the mathematical formalism used in previous resolutions of the paradoxes
is inadequate and should be replaced by a recent version of nonstandard
analysis, Internal Set Theory (IST). In this paper; we critically analyze
MM’s solution and offer our suggestions for supplementing the classic
work of Vlastos and Grünbaum (Vlastos 1967; and Grünbaum 1968).

In Section 2, we review Zeno’s paradoxes and the Simple Mathematical
Theory (SMT), to borrow MM’s label, used to resolve them. We then
outline, in Section 3, the criticisms of the naive use of this mathematical
formalism. Section 4 summarizes the philosophical discussions of Vlastos
and Grünbaum, which we believe provide the most satisfactory attempts
to overcome these criticisms within the context of SMT. The following
section provides an introduction to Internal Set Theory. In Section 6, we
first present MM’s application of this theory in their resolution of the
paradoxes and then argue that their resolution is not helpful. In essence we
suggest that a resolution based on IST is even more paradoxical than Zeno’s
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paradoxes themselves. In Sections 7 and 8 we present our suggestions for
resolving the paradoxes. We argue that concepts of time and motion are best
understood by regarding motion as a more fundamental concept than time.
Consequently, time is defined in terms of motion. Using this definition, it is
shown that time should be analyzed in terms of intervals rather than instants.
The paradoxes are then discussed using a model of the ordinary real number
system based on intervals. This approach unifies the positions taken by
Vlastos and Grünbaum and provides additional justification for some of
their assertions. In Section 9, we re-examine the question of whether an
infinite number of tasks (to be defined below) can be performed in a
finite time. If it is assumed that physical measurements can be made with
arbitrary accuracy, then such a performance is not impossible according
to the laws of classical mechanics, but is prohibited by the Heisenberg
uncertainty principle of quantum mechanics. Section 10 summarizes our
results.

2. ZENO’S PARADOXES

This paradox, often referred to as the “Race Course”, or the
“Dichotomy”, claims to show that a runner can never complete
a race. In order to do so, the runner must first traverse 1/2 the
distance, then the next 1/4 of the distance, etc. In addition, even
if all these decreasing intervals are traversed, the runner can not
reach the end point of the course.

(Z1)

The second paradox, also referred to as the Dichotomy, appears
to show that not only can the runner not complete the race, but
cannot even begin it. To reach the end of the race course, the
runner must first reach the half-way point. However, this entails
first reaching the quarter-way point, etc.

(Z2)

The most famous paradox, known as the “Achilles”, shows that if
Achilles gives a tortoise a head start in a race, Achilles can never catch up
to the tortoise. By the time Achilles reaches the point where the tortoise
was when the race started, the tortoise has already moved some distance.
Achilles now runs this shorter distance, but the tortoise has continued to
progress during this shorter time interval, etc. By looking at the race from
the viewpoint of the tortoise, this paradox can be essentially reduced to the
Race Course (Z1), so we need not discuss it explicitly.

THE ARROW. This paradox appears to demonstrate that motion is impos-
sible. At any given instant of time, an arrow in flight occupies a definite



MATHEMATICS, MODELS AND ZENO’S PARADOXES 145

position in space, an interval precisely equal to its length. If at this and at
every other instant of time it occupies a single region of space, it is not
moving at these instants. Then, when does it move?

In order to speak precisely about paradoxes (Z1) and (Z2), it is cus-
tomary to take the race course to be the unit interval [0, 1] in R, the real
numbers. The runner is regarded as a point, moving at constant velocity
equal to 1, which traverses the interval in one unit of time. If �(t) denotes
the position of the point at time t, then �(t) = t.

From the perspective of SMT, which is based on calculus and infinite
series, Zeno’s paradoxes seem unproblematic. The distance traveled at any
given time is given by the (differentiable) function �(t). The Arrow is
resolved by noting that at any instant of time, � , the object is moving with
a velocity equal to the derivative�0(�). To resolve (Z1), note that the times
needed to traverse the various subintervals of [0, 1] form the convergent
infinite series 1

2 + 1
4 + 1

8 � � � whose limit is 1. Thus the total distance can
be completed in a time interval of length 1, which seems to eliminate the
objection that the infinitely many subintervals would take infinitely long
to traverse. (Z2) is resolved by an analogous argument.

The discussion given in the preceding paragraph is based on several
assumptions concerning the relevance and applicability of the mathemat-
ical model to actual physical motion. Contemporary interest in the para-
doxes lies in the analysis of the use of R to model space and time and the
use of infinite series in describing a physical process.

3. OBJECTIONS TO THE USE OF THE SIMPLE MATHEMATICAL THEORY

There are at least four objections to the purely mathematical resolution
of the paradoxes. These objections are central to philosophical as well as
scientific analyses of Zeno’s work.

First, the application of SMT to (Z1) and (Z2) is inadequate because it
entails the performance of an infinite number of acts, represented mathe-
matically by the summing of an infinite series or physically by the traversal
of all the segments of the path. The possibility of performing an infinite
number of acts has been rejected by many philosophers since classical
times. The oldest reason for this rejection is that an infinite number of acts
can not be performed in a finite amount of time. SMT avoids this problem
by assuming a physical model in which time elapsed is proportional to
distance covered and time, like distance, is itself infinitely divisible. This
model, and hence SMT’s validity, was rejected by various philosophers
who denied that time could be modeled by the real number continuum
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(James 1948; and Whitehead 1929). These philosophers argued that “the
temporal order of occurrence of physical events is isomorphic with the
discrete order of the nows of our awareness” (Grünbaum 1968, 48). Fur-
ther, each of these “nows of our awareness” requires a minimal length of
time. Thus, performing an infinitude of acts would take infinitely long. We
believe that Grünbaum (1968) showed successfully that even though there
may be a minimum length of time required for the perception of an event,
within the context of a scientific description, time is infinitely divisible.
(See also, Smart 1967 for a mathematical treatment of becoming and other
perceptual aspects of time.)

Other philosophers, while not subscribing to the view that the percep-
tual nature of time cannot be captured mathematically, still regard the
notion of performing infinitely many acts as inherently meaningless or
self-contradictory (see, for example, Thomson 1967a). Although Thom-
son admitted that his argument was refuted by Benacerraf (1967), he main-
tained that Benacerraf could not show that the performance of an infinite
number of events in a finite time is not inherently meaningless or self-
contradictory (Thomson 1967b). We will discuss this issue in more detail
below.

Second, in the case of (Z1), even though the sum of the infinite series
is equal to 1, the union of the infinite set of intervals [1� 1

2n�1 , 1� 1
2n ], n

= 1, 2 : : : does not include the endpoint 1 of [0, 1].
Third, in the case of (Z2), the motion would have to be initiated during

the time corresponding to the “last term” in the sequence of times 1
2 , 1

4 ,
1
8 : : : . Since there is no last term, SMT fails to account for the initiation of
the motion.

One can argue that SMT does not actually prescribe performing an
infinite number of acts, but rather replaces this completed infinity with that
masterpiece of 19th century mathematics, the notion of limit. This raises
the question: In what sense does a formal mathematical construct such as
limit explain an observation about the physical world? As we shall see,
this question applies no less to MM’s resolution of Zeno’s paradoxes using
Internal Set Theory than it does to SMT.

Fourth, with regard to the Arrow, although the derivative can be used
to represent speed at an instant, its relevance in explaining motion at that
instant is problematic. In order to compute the derivative at a particular time
� , we must be able to evaluate � at all t in some (open) neighborhood of � .
Thus, defining the motion of the arrow using the derivative at a particular
time � requires knowledge about the arrow’s position at additional instants
of time; i.e. we must know its motion throughout some interval containing
� .
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4. PHILOSOPHICAL RESOLUTIONS OF ZENO’S PARADOXES

In their fundamental inquiry, Vlastos and Grünbaum offered resolutions
of Zeno’s paradoxes within the framework of SMT (Vlastos 1967; and
Grünbaum 1968). Both deal with the Arrow by observing that velocity
and hence motion can only be defined in an interval of time and that it is
meaningless to talk about the motion at a single instant of time. Vlastos
resolves (Z1) and (Z2) by arguing that Zeno’s partition of the interval [0,
1] into infinitely many pieces is not necessary in order to account for its
traversal. Grünbaum, on the other hand, does believe that it is necessary
to consider this partition, but argues that completing an infinite number of
tasks (traversing all the subintervals) in a finite time is both possible and
intelligible.

Vlastos defines aZ-interval to be one of the intervals [1� 1
2n , 1� 1

2n+1 ],
and a Z-run to be the traversal of one or more contiguous Z-intervals. He
then makes an important distinction. If a Z-run is to be considered as a
single “physically individuated” event, he refers to it as a Za-run. On the
other hand, a Zb-run is one for which “the traversal of any subinterval
we please by a runner would also count as a ‘run’ ” (Vlastos 1967, 373).
Thus, a Zb-run might be considered as partitioned into 2 sub-runs (e.g.,
by the midpoint), 10 sub-runs, or even an infinite number of sub-runs
by considering, e.g., all the Z-intervals. (We should note that Vlastos
actually uses the terms runa and runb. We find the “Za- and Zb-run”
terminology a natural extension of the idea of a “Z-run” and, in addition,
more euphonious.)

Vlastos points out that Za-runs are the ones we normally think of as
separate events or actions, while Zeno has cleverly used the word “run”
in both senses. On one hand, he plays on our willingness to conceive of
infinite subdivisions (Zb-runs) and, on the other hand, on our unwillingness
to admit the possibility of infinitely many discrete acts (Za-runs). Zeno’s
argument can now be rephrased.

� [0, 1] can be partitioned into the collection of all Z-runs (Zb sense).
� Performing each suchZ-run (Za sense) is necessary in order to traverse

[0, 1].
� Since each Za-run is an act, this violates the proscription against a

completed infinity of actions.

If we are willing to consider the run [0, 1] in the Zb sense, then there is
no problem with describing it in terms of any number of (Zb) runs. In fact,
there are infinitely many different ways of so describing it. However, as
Vlastos points out, no particular description or decomposition is necessary
in order to describe the run [0, 1]; in fact, any particular description is
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sufficient, including the description consisting of [0, 1] itself: “all that is
needed to consume @0 parts (partsb) of an egg is simply to eat an egg”
(Vlastos 1967, 373).

Thus, Zeno’s second assertion is suspect, since breaking down the
uniform motion of the runner into an infinite number of Za-runs is neither
semantically honest nor, in fact, what we physically do when we observe
the runner. Here is where Zeno traps us by shifting from a Zb to a Za

interpretation of the runs. We essentially agree with Vlastos’ analysis and
will supply below some further details concerning the justification for the
distinction between Za-runs and Zb-runs.

Vlastos’ analysis shows that we are not forced to consider an infinite
number of actions. However, the question concerning the possibility of
performing an infinite number of them remains. For a discussion of this
issue, we turn to Grünbaum’s analysis of “infinity machines” (Grünbaum
1968). Grünbaum argues that it is “kinematically” possible to conceive of
machines that perform an infinite number of delineated acts in a finite time.
By kinematically possible, Grünbaum means that the motion involves no
discontinuities or infinities in position or velocity. He gives the example
of the “staccato runner” who runs twice as fast as the usual runner for
the first half of each Z-interval, then rests for the remainder. The rests
serve to delineate the motions. In this first version of the example, such
a runner expends an infinite amount of energy. In a later paper, using
a construction of Friedberg, Grünbaum shows how this motion can be
smoothed (Grünbaum 1970). The smoothed motion involves an infinite
sequence of sub-motions, each terminating in a finite rest period. The
interval is traversed in one unit of time. This motion violates no law of
classical (as opposed to quantum) physics (see Section 9). If one grants that
such motions are of type Za, then Grünbaum has resolved Zeno’s problem
by showing that the performance of infinitely many acts does not seem to
violate any logical or physical laws.

Grünbaum also proposes a solution to the problem of how the runner
can reach the point 1 even though no Z-interval contains 1 (Grünbaum
1968). He notes that the completion of the infinite number of subintervals
is “equivalent” to reaching 1 since the length of the interval [0, 1) is
equal to the length of the interval [0, 1]. Vlastos had previously given a
similar argument, also based on distances (Vlastos 1967, 374). We believe
that neither answer is convincing. An alternative explanation based on the
nature of the real number system is given below in Section 8.

In their discussion of Zeno’s paradoxes, MM do not directly refer to
the arguments of Vlastos and Grünbaum. Nevertheless, because these ear-
lier arguments rely on the framework of SMT, MM presumably find them
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inadequate. MM assert that a resolution of Zeno’s paradoxes can be accom-
plished by using mathematics that explicitly introduces infinitesimals in
a rigorous fashion. In order to appreciate and criticize their analysis, we
need to examine some results of nonstandard analysis on which their work
is based.

5. INTERNAL SET THEORY

In the early 1960’s, the logician Abraham Robinson showed that “first
order” statements about the reals have a nonstandard model in which “infin-
itesimals” and “infinitely large” numbers exist (Robinson 1966). Such
models have been constructed (see Steen 1971 for a survey). In these mod-
els, an infinitesimal is a number which is bigger than 0 and smaller than
any “standard” positive real. An infinite real can be defined as the recipro-
cal of an infinitesimal. It should be emphasized that this construction is a
nonstandard model for the usual axiomatization of the reals. Nonstandard
models for the reals are possible because only first-order statements about
real numbers are required to be true in a model. The completeness of the
reals, as expressed for example by the Least Upper Bound property, is not
a first order statement and, indeed, does not hold in any model of the reals
that contains infinitesimals (Steen 1971).

In 1977, Nelson showed how infinitesimals could be obtained by the
addition of certain axioms to the usual Zermelo-Fraenkel set theory (Nelson
1977). Because of the addition of these axioms, his approach, Internal Set
Theory (IST), can be considered to be a change in the fundamental structure
of mathematics. In IST the existence of infinitesimals is guaranteed by a
theorem, hence they must appear in every model of the theory. By contrast,
Robinson’s infinitesimals exist only in certain (nonstandard) models of
Zermelo-Fraenkel set theory.

First, Nelson introduces an undefined property (predicate) called stan-
dard. An object for which this predicate is true is called a standard object.
Intuitively, the standard objects include all the constructed objects of clas-
sical set theory. Formulas which do not involve the predicate “standard”
are said to be internal; the others are called external. Nelson now adds
three axioms governing the behavior of this predicate. We list these axioms
below, with a brief explanation of each, and encourage the reader to consult
Nelson’s elegant paper for the complete theory (Nelson, 1977).

We follow Nelson’s notation by using 8stx and 9stx to denote “For all
x, x standard implies : : : ” and “There is an x such that x is standard and
: : : ”, respectively. 8finx and 9finx are defined similarly for the predicate
finite. In mathematics, a set is finite if and only if it can not be placed in
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1–1 correspondence with a proper subset of itself. However, in the context
of Internal Set Theory, this definition does not always coincide with the
usual intuitive meaning of the word “finite”. This point is crucial in our
critique of MM’s discussion of Zeno.

Idealization. Let B(x; y) be an internal formula with free vari-
ables x, y and possibly other free variables. Then

(I)

8st finz9x8y 2 z B(x; y), 9x8sty B(x; y):

This axiom is extremely powerful. It implies that a relation has a simulta-
neous solution over all standard sets if and only if it has a solution for every
finite standard set. Suppose B is the statement “x is a non-zero positive
real smaller than all positive reals y”. Clearly, if y is restricted to any finite
set of reals, such an x can be found. Idealization tells us that such an x can
be found which is smaller than any standard y. This is how infinitesimals
make their appearance.

Standardization. Let C(z) be any formula with at least the free
variable z.

(S)

8stx9sty8stz(z 2 y , z 2 x ^ C(z)):

This supplements the Axiom Schema of Separation (Suppes 1960) by
showing how to form standard sets by imposing conditions on elements
of already existing standard sets. It is necessary since the set building of
Separation makes no mention of “standard”.

Transfer. Let A(x; t1; : : :; tk) be an internal formula with free
variables x, t1; : : : ; tk and no other free variables. Then

(T)

8stt1 � � � 8
sttk(8

stxA(x; t1; : : :; tk)) 8xA(x; t1 : : : tk)):

This says that a formula with all but one variable standard can be tested on
standard sets to determine its truth on all sets. By taking contrapositives,
we can conclude that if a set with certain properties exists, then a standard
set with those properties exists. This tells us that any uniquely defined set,
such as the integers or reals, must be standard.

(Note that the initials of the axioms are the same as those for Nelson’s
name for his work: Internal Set Theory.)

The two main results of IST used by MM are the following:

THEOREM 1.1. Let X be a set. Then every element of X is standard if
and only if X is a standard finite set.
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THEOREM 1.2. There is a finite set F such that for all standard y we have
y 2 F .

(The proof of this startling result is actually quite simple. Consider the
statement 8st finz9x8y 2 z (x is a finite set & y 2 x). This is clearly true
since we can take x = z. By Idealization 9x8sty (x is a finite set & y 2 x);
let F = x.)

6. INTERNAL SET THEORY AND ZENO’S PARADOXES

MM’s argument makes use of the following principle (McLaughlin and
Miller 1992, 378):

The fact that an object is located at a point in space-time can-
not be established if the coordinates describing the point are
nonstandard real numbers.

(E2)

Regarding (Z1), MM note that the set of endpoints of the Z-intervals
is the collection of points of the form 1� 2�i. Since this is an infinite set,
Theorem 1.1 tells us that at least one such endpoint is nonstandard. By
their principle, a run terminating at this endpoint must be rejected. Thus,
the premise of (Z1), namely that each Z-run must be performed, has been
shown to be false.

This reasoning can be repeated. Thus, MM are able to claim that only
a finite number of Z-runs are needed to complete the race course. This
argument is made formal by applying Theorem 1.2 to the set of points
that the runner must traverse, i.e., those in the unit interval [0, 1]. (MM
consider points on the runner’s world-line, but this is not necessary for
their argument.) Let S = [0; 1] \ F , where F is the set characterized by
Theorem 1.2. Then S is a finite set (in the context of IST) which contains
at least all the standard reals in [0, 1].

One might think that S is infinite since the function x 7! 1
2x appears to

be a bijection of S with a proper subset of itself. However, this is not the
case because it is impossible to prove that the image of this function is a
subset of S. If x is a nonstandard element of S, then there is no guarantee
that the nonstandard number 1

2x lies in S since F is only guaranteed
to contain all standard objects. This argument illustrates the nonintuitive
nature of IST and the care which must be taken in its use.

Since S is finite, the usual arguments of set theory show that there is
a natural number n, and a bijection: S $ fz 2 Njz < ng. The latter
set is a nonstandard proper subset of N (the natural numbers), and n is a
nonstandard natural number. Denoting by ri the image in S of the natural
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number i under this bijection, we obtain 0 = r0 < r1 < � � � < rn = 1,
a “finite” partition of [0, 1]. Thus, MM have replaced Zeno’s infinite set
of rational endpoints 1 � 2�i with a “finite” set of endpoints. Despite its
“finiteness”, this partition is exceedingly fine. According to Theorem 1.2,
it contains at least all the standard reals as partition points! MM argue that
this “finite” partition not only allows a theory of motion replacing SMT,
but also resolves the Arrow paradox by virtue of the fact that the arrow’s
motion is frozen only at the standard reals constituting the partition. The
arrow is free to move on the presumably much larger set [0; 1]� S.

There are two primary objections to MM’s use of IST: first, the use
of the word “finite” in the context of nonstandard analysis and, second,
the very applicability of nonstandard analysis to the resolution of Zeno’s
paradoxes.

In his review of Nelson’s paper, Davis (1983) points out that Nelson’s
strict syntactical (formal) view of IST “leads him to use terminology in a
way that may appear peculiar” (Davis 1983, 1203). Referring to Nelson’s
use of the word “finite”, he notes that “some may wish to read ‘hyperfinite’
for ‘finite’ and ‘hyperreal’ for ‘real’ ”. The use of hyperfinite and hyperreal
has been widespread by practitioners of nonstandard analysis to indicate
that they are using nonstandard models for the reals and that the words
finite and real would be misleading in this context. In referring to the setF
which contains all standard reals, Davis writes: “Of course this same result
is available in more conventional treatments [of nonstandard analysis] as
well. But F then would be called ‘hyperfinite’ to emphasize that while F
shares all the ‘internal’ properties of finite sets, it is of course infinite when
viewed externally [i.e. from outside IST]” (Davis 1983, 1204).

Unfortunately, MM take advantage of this ambiguity. They use the word
“finite” in its technical sense, but leave the impression that it retains its
intuitive meaning. If they had pointed out that the set S of “checkpoints”
which they construct is actually hyperfinite, as is its cardinality n, their
argument would have been far less dramatic and convincing. The natural
numbern is not an ordinary natural number like 23 or even like a googolplex
(1010100

).
The nonstandard natural numbern can never be constructed because, as

Nelson proves, anything that can be explicitly constructed using classical
methods is a standard object. In some mystical sense, if it were possible to
figure out what n is, then it could not be that. The primary use of IST is
to provide elegant alternative proofs of theorems via nonstandard analysis.
However, IST also provides a delightful game in which formal definitions,
originally based on intuition, can be viewed in new and unfamiliar contexts
in which their meaning may be very different from their intuitive one.
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Moreover, contrary to what MM state, there is no particular reason to
believe that there is any difference in “size” between the set [0, 1] and the
setS which they construct. AlthoughS is internally finite, it is nonstandard.
It contains at least all the standard reals in [0,1], and conceivably many
more numbers. In fact, S is not even uniquely defined because F is not
uniquely defined (Nelson 1977).

Concerning the nature of IST and nonstandard analysis in general, Nel-
son quotes Robinson’s comment that “from a formalist point of view we
may look at our theory syntactically and may consider that what we have
done is to introduce new deductive procedures rather than new mathe-
matical entities” (Nelson 1977, 1198). It should be noted that nonstan-
dard analysis was initially created not to introduce new deductive proce-
dures, but to justify old deductive procedures based on the infinitesimals
of Newton and Leibnitz. Bishop Berkeley (1734) dismissed infinitesi-
mals as “ghosts of vanished quantities”. Whether nonstandard analysis has
resurrected these ghosts is debatable, but the work of Robinson, Nel-
son, and others has shown that the “new deductive procedures” based on
infinitesimals can provide a powerful and legal mnemonic for the more
complicated arguments using limits. However, there is a price to be paid
for the powerful formalism of non-standard analysis, and IST in particular,
namely the extremely nonintuitive properties of some internally finite sets
and the philosophical problems raised by the non-experiential nature of
infinitesimals.

From the point of view of mathematical formalism, there is no objection
to numbers that are internally finite but externally infinite. Even intuitionists
allow the formalists their games. If MM were trying to explain a logical
paradox using formalism then there would be no problem. But Zeno’s
paradoxes are different; they are not based on an argument of logic, but
rather upon our supposed intuitive rejection of infinite processes. Infinite
processes can be accommodated by formal mathematical models. Nearly
70 years ago Russell showed that infinite sets, sums, cardinals and ordinals
provide a sound basis for analyzing motion (Russell 1929). And modern
measure theory, utilizing limiting operations over infinite sets, shows how
sets of positive measure can be comprised of points of measure 0 (Rudin
1966).

It is not mathematics which stands in the way of the infinite, but rather
the intuition that anything which requires the performance of an infinite
number of acts is inherently unintelligible, if not self-contradictory. If
MM reject SMT because it fails to address this intuitive issue, then they
should not accept IST simply because it uses the word “finite” instead
of “hyperfinite” or “internally finite”. In their concluding paragraph, they
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write: “It should be noted that some of the sets utilized in the present
work can be viewed ‘externally’ (Nelson 1977) wherein they have infinite
cardinality. However, this fact does not affect the validity of the treatment
of Zeno’s objections within an IST-modeled universe.” In isolation this
comment is formally true, but MM go further and state that the use of
IST is to be “interpreted within an empirical context” (McLaughlin and
Miller, 1992, 371). Given the counterintuitive meaning of “finite” in IST,
why should one choose to view the universe through the lens of IST?
Indeed, IST, which applies the predicate “finite” to a set that contains all the
standard reals, does not relieve the uneasiness caused by Zeno’s paradoxes.
It only explains the obscure by the more obscure. In summary, Internal Set
Theory is not useful in analyses of Zeno’s paradoxes of motion because
its application requires a model of the world that is not in accordance with
experience or intuition.

7. TIME AND MOTION IN ZENO’S PARADOXES

Vlastos has suggested that it is a category-mistake to refer to motion
occurring at an instant of time (Vlastos 1967, 373). In analyzing motion,
time can only be discussed in terms of intervals or duration. In fact, we
would go further and reverse the priority of the concepts of time and motion.
Motion should be considered to be the fundamental concept. While humans
seem to have a qualitative sense of the passage of time, the quantitative
concept of time is derived from the concepts of space and motion. If nothing
in the world changed, there would be no need for the measurement of time
and, moreover, no possible definition of time. The measurement of time
was invented to describe change.

A motion is a change, perceived by some observer, in an object’s posi-
tion with respect to other objects considered by that observer to be station-
ary. Certain types of motions are periodic; the moving object “periodically”
returns to its initial position. Humans have an inborn ability to sense such
periodicity. A unit of time is defined in terms of the period of some motion
that is subjectively judged to be uniform, such as the length of a day, a
breath, or a heartbeat. (Galileo measured the period of a pendulum by
counting his pulse.) Refinements in the measurement of time are made by
the discoveries of other processes that appear to be more uniform, e.g., the
vibration of a quartz crystal or the frequency of some atomic transition.

Once it is realized that motion and not time is fundamental, Zeno’s
paradox of the Arrow dissolves. One should not ask whether the arrow
is moving at a particular time because time is a characteristic of motion,
motion is change, and there is no change at a point. It is only when we are
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trapped by the verbal snare of speaking of motion at a point in time that
we get confused. No one has ever perceived motion stopped at a point. No
matter how fast the shutter or quick the eye, there is still a finite interval of
change, still a slight blur.

This position is not inconsistent with the use of derivatives to define the
velocity at an instant of time. Velocity, defined as a derivative, is a limit of
measurements of position and time defined throughout an interval. Thus,
the derivative does not define motion at a point, it merely assigns to a point
a number which depends on motion already defined in a neighborhood of
the point. As many beginning calculus students have been told: “dy=dx is
not a quotient, it is the limit of quotients.”

We may perceive a motion either all at once, or made of several pieces.
We never perceive a motion as an infinite number of pieces since this
would entail perceiving infinitely small changes. Although we can perceive
a given motion only once (we can never step in the same stream twice), we
can conceive of the same motion many different ways. Vlastos’ distinction
between Za- and Zb-runs arises in this manner. Consider again the run
from 0 to 1 traversed at constant velocity. The Za-run is the run perceived
as a single uninterrupted motion. The Zb-runs are the various conceptual
subdivisions of the perceptual run. Let us call the conception of the run that
coincides with the perception of the uninterrupted motion the canonical
run. The various other possible conceptual runs are all partitions of the
unit interval and can all be constructed from the canonical run. Thus, [0,
1
2 , 1] and [0, 1

2 , 3
4 ] are conceptual runs. Zeno’s partition is the conceptual

run [0, 1
2 , 3

4 , 7
8 , : : : ]. Since all such conceptual runs are derived from the

same canonical run, they must satisfy a certain consistency condition to be
discussed in the following section.

On a perceptual level there are no paradoxes since no one can perceive
infinitely small runs at either the beginning, end, or middle of the race
course. In (Z1), the runner reaches the end because he reaches the limit of
our perception of small distances and small changes and simply slips over
the last intervening distance without us observing him do so. A similar
argument applies to (Z2).

On the conceptual level there is complete freedom of choice. Conceptual
runs exist solely in the mind and, in fact, are subject only to those conditions
that a particular mind chooses to impose on them. Those who believe they
can conceive of infinity (like Inf in the dialogue below) are perfectly free
to choose a series of runs with infinitely many pieces; they simply reject
Zeno’s claim that such actions are impossible. Those who do not believe
they can conceive of infinitely many acts or runs (like Fin) will simply not
do so. Now let us listen in on their conversation.
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Inf You must concede that Achilles has to pass through every point 1�
2�n.

Fin Yes I do. Name anyn and I’ll conceive of the run [0, 1
2 , 3

4 , : : : , 1�2�n].
Inf But you haven’t reached 1.
Fin [0, 1

2 , 3
4 , : : : , 1� 2�n, 1]: no problema!

Inf But what about 1� 2�(n+1)?
Fin You never asked about that. But I certainly have included it, it’s just

not an endpoint. However, I’ll throw it in explicitly by adding an extra
interval if that will make you happy.

Inf You must throw them all in.
Fin But why, if I can conceive of a run that consists of any finite collection

of them which you can name?
Inf Because every one of them must be undertaken.
Fin “Undertaken” is a misleading word; it sounds as if a special effort

or delineation must be made for each interval traversed. In fact, I am
incapable of conceiving of an infinite number of undertakings, since I
have never perceived such a thing in my life. I just conceive of doing
more and moreZ-runs until they get so small I can’t conceive of them,
at which point I just move Achilles the last tiny bit to the end of the
racetrack, by throwing in a 1 and closing the path. This is exactly
consistent with my perceptions and my intuition. By the way, how do
you reach 1, since none of your Z-runs contain 1?

Inf That’s part of my conception of infinity: when I have imagined these
infinitely many Z-runs having taken place, I am indeed at 1.

Fin Aha! I get it. You’re at one with the infinite; I’m at one with the finite.

How does Inf, or anyone, conceive of the infinite collection of Z-runs?
Possibly by some cosmic insight, but more likely with the aid of that great
facilitator of conceptions, mathematics.

8. RATIONAL INTERVALS AND THE REAL NUMBERS

The real numbers can be constructed as families of rational intervals, and
their algebraic properties derived from “interval arithmetic”. This approach
to the reals, based on the fundamental nature of scientific measurement,
is due to G. Stolzenberg (1990). It is more suitable for dealing with the
interval-like nature of time and motion than the traditional approaches of
constructing the real numbers using Dedekind cuts or Cauchy sequences.

We begin by noting that once units have been chosen for distance
and time, all measurements involve rational multiples of these units. Fur-
thermore, measurements are never exact; a measured value is actually an
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interval of rational numbers giving a range of possible measurements of an
observed quantity. To make these ideas precise, for any rationals r � s, the
symbol [r, s] is used to denote the set of rationals x such that r � x � s.
We call this set a rational interval. Its length is s� r.

If two measurements are made of the same quantity, we expect the
rational intervals obtained to overlap. We call this property consistency.
For example, in measuring the circumference of a circle whose diameter is
1, we might obtain the intervals [3.11, 3.145] and [3.14, 3.15], both of which
contain, for example, the rational 3.142. These intervals are consistent. We
note that sometimes two measurements of the same quantity do not satisfy
the consistency condition. As of early 1995, the physical/chemical theory
of stars date the “Big Bang” in the interval [�18, �14] (billions of years
ago), whereas the Cepheid variable information from the Hubble telescope
place this date in the interval [�12, �8]. These intervals are inconsistent.

Not only do we expect our measurements to be consistent, but we expect
them to become more precise as measurement devices improve. A more
precise measurement is reflected in a smaller interval.

The fundamental definitions and theorem characterizing the real num-
bers are:

DEFINITION 1. A real number is a family of rational intervals with the
following two properties.

(Consistency): Any two intervals have a non-empty intersection.
(Fineness): For any rational � > 0, there is an interval of length less than

�.

A rational number r has a particularly simple representation as the family
consisting of the single interval [r, r].

One can define the usual algebraic operations on real numbers by defin-
ing them on rational intervals and hence on families of rational intervals.
For example, [r; s] + [u; v] = fx + yj r� x� s& u� y� vg = [r+u; s+v].
We will omit further details of this interval arithmetic. However, we do
need to define order relations on reals.

DEFINITION 2. Two real numbers A and B are equal if every interval of
A meets every interval of B.

DEFINITION 3.A < B if there is some interval of A which lies wholly to
the left of some interval of B. We write A � B if it is not true thatB < A.

DEFINITION 4. The real interval [A, B] consists of the reals X such that
A � X � B.
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THEOREM (Completeness). Let F be a family of real intervals which
satisfy the consistency and fineness conditions. Then there is a unique real
numberX which belongs to every one of the intervals.X is called the limit
of the family F .

We now apply these ideas to time and space, which are to be modeled by the
real numbers. In identifying a point in time, we need only the assumption
that consistent and arbitrarily fine, but not infinitely fine, measurements
can be performed. Given any � > 0, we need only know how to construct
a measurement of tolerance less than �. It is not necessary to perform the
impossible task of measuring any time exactly. A point in time, as a real
number, is determined by a family of consistent and arbitrarily fine time
intervals.

For the purposes of analyzing Zeno’s paradoxes, we define a motion to
be a continuous function �: I ! R, where I is a closed finite subinterval
of R, the reals. Mathematically, such a function is generally defined on
the reals by first specifying it on the rationals and then checking that
j�(x) � �(y)j can be made small if x, y 2 [r; s] and the length of [r; s]
is made sufficiently small (uniform continuity on finite intervals). Letting
[r; s] range over a family defining the realA, we can then define�(A) using
the completeness theorem. This process is sometimes called “extending
by continuity”. Any motion that could actually be observed and measured
would have to be defined in this manner. In addition, any theoretical motion
described by algebraic or analytical methods could also be defined in
this way, since the algebraic or analytical functions of mathematics can
be defined via rational arithmetic and extension by continuity. Such a
program is often carried out (or at least described) in a modern analysis
course using, for example, Cauchy sequences or Dedekind cuts instead of
interval arithmetic.

Now we resolve the Arrow paradox using this formalism. To say that
the arrow is at pointP at time t (both real numbers) is to say thatP = �(t).
In the light of the previous discussion, this means that � is defined on the
collection of rational intervals that define t, and thatP is determined by the
behavior of � on these intervals. There is no motion at a point, just motions
in arbitrarily fine neighborhoods of a point. The position P is defined by
these motions. We have thus provided an exact mathematical description
of position at an instant of time in terms of motion in an interval of time.
In a similar way we could also define the derivative of � at t. This provides
us with a measure of velocity at an instant of time, also in terms of motion
in an interval.
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Using the definition of motion as a function � : I ! R, we can
decompose any motion into submotions or subruns. Decompose the interval
I into a family of subintervals fJ�g�=1;2;::: so that [�J� = I . Denote by
�� the function �jJ� (� restricted to J�); then �a : J� ! R for each
�. These functions satisfy, for each pair �, �0, the following consistency
condition:

��jJ� \ J�0 = ��0 jJ� \ J�0 :

This is a description of the motion or run �, in the Zb sense, as a sequence
of subruns ��. Furthermore, if I = [�K� is a different decomposition
of I into subintervals, then the functions �� = �jK� provide us with a
different description of the same motion �.

Now consider the converse situation. Instead of beginning with �, start
with any particular decomposition of I into subintervals, I = [�J�, and
motions �� : J� ! R on each of the subintervals. If the consistency
condition is satisfied for each pair ��, ��0 , then together these individual
motions define a (unique) motion � on all of I , whose restriction to each
J� is precisely ��. Thus, a motion on a whole (time) interval is exactly
equivalent to a consistent family of motions on a family of subintervals.
There are as many different descriptions of a motion � : I ! R as there
are subdivisions of I . Using this description we can clarify both Fin’s and
Inf’s arguments in mathematical terms. Fin’s denial of the necessity of
conceiving the total run as the collection of Z-runs is simply the assertion
that any description of a motion in terms of a consistent family of submo-
tions is as good as any other such description. No one description should
be considered to be the “correct one”. Thus, Fin chooses to use a finite
union of intervals J� corresponding to his finite perception of the motion.
Inf uses an infinite union of intervals K� corresponding to her Zenonian
description of the motion.

Now we defend Inf ’s claim that the runner is at 1 after all the Z-runs,
even though no Z-run terminates with 1. Note first that

1[
k=1

Zk = [0; 1)

where Zk = [1� 2�(k�1); 1� 2�k].
This interval [0, 1) with 1 omitted seems to put Inf on the spot, but this

is a misinterpretation. The infinite union does not represent the result of
infinitely manyZ-runs! Rather, it represents the result of running any finite
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number of them. This surprising fact is perhaps more easily understood by
writing

1[
k=1

Zk =
1[
k=1

 
k[

i=1

Zi

!
:

A point is in a union of sets if it is in (at least) one of them. Thus, a
point is in the infinite union on the right of this equation if it is in one of
the finite unions; in other words, it is in the infinite union if it is part of
some finite Z-run. The half-open interval [0, 1) therefore just represents
the results of finite Z-runs. To see where the runner is after all possible
Z-runs, we must define this position as a real number, i.e. as a family of
rational intervals. After the kth Z-run, he is at the point 1 � 2�k which
is in the rational interval [1 � 2�k, 1]. Thus, we can take as our family
the collection of all such rational intervals [1� 2�k, 1], k = 1, 2, : : : This
family clearly contains intervals of arbitrarily small length, and 1 is in each
interval. By Definition 2, the real number defined by this family is precisely
1 (represented as [1, 1]). Thus, Inf is perfectly correct in conceiving the
result of the infinite process of performing all Z-runs as reaching 1.

The point of this argument has been to construct the real number rep-
resenting the runner’s final position. It is crucial to note that no limit is
involved. In the construction of a real number based on the completeness
theorem, the data is a family of real intervals that is consistent and has inter-
vals of arbitrarily small length. The limit of such a family is the unique
real number that lies in each interval of the family. The situation for the
runner is different. Here the data for his final position consists of a family
of rational intervals that satisfies consistency and fineness. A priori, there
is no reason to suspect that such a family has a unique common element.
We do not take a limit of such a family because there is no need to. By
the definition given above, such a family in itself is the real number. In
addition, we have shown that this particular number, defined by a family
of rational intervals, equals the real number 1, defined by the family con-
sisting of the single interval [1, 1]. That these two families both represent
the same number follows from the definition of equality: the interval [1, 1]
meets each rational interval [1� 2�k, 1].

The definition of a real number using rational intervals is consistent with
the constructivist philosophy of mathematics. The family defining a real
number may be as simple as a single interval [r, r], defining the rational
number r as a real, or as complicated as a family defined by partial sums of
a convergent series. Even though the family may be infinite, constructive
procedures may be used to determine whether the consistency and fineness
conditions are satisfied and whether two reals are equal or unequal.
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We conclude our presentation of mathematical approaches to Zeno’s
paradoxes by noting that, unlike models based on IST, the model based on
families of rational intervals provides a realistic interpretation of physical
measurements and their role in the representation of motion.

9. THE PHYSICS OF ZENO’S PARADOXES

Vlastos’ distinction between Za- and Zb-runs was a major contribution
in understanding the problem of completing the infinite number of tasks
involved in Zeno’s Dichotomy and Achilles paradoxes. However, Vlastos
never explains why in discussing physical motion it is inappropriate to
use the idea of Zb-runs. We believe that the distinction between Za-runs
and Zb-runs captures the distinction between the physics that is involved
in the motion of any real object and a purely mathematical model of
the relationship between distance and time, involving such concepts as
intervals, subintervals, and infinite sums of subintervals.

Mathematically, there is no problem with defining the sum of the infinite
series used in the analysis of the Dichotomy. The infinite number of tasks
can be completed because the sum of the infinite series

P
(1=2n) is well-

defined, and there is no need for the distinction between Za- and Zb-runs.
The two types of runs are alternative, equally valid descriptions of the same
motion on the unit interval 0 � t � 1.

However, for the actual motion of a real object, Za-runs are distin-
guishable from Zb-runs. In order to decompose a run into successive
Za-traversals of subintervals, it is necessary that the completion of each
sub-interval be indicated in some manner. Either some sign must be given
by the moving object at the end of each subinterval indicating that it has
completed that subinterval or some measuring device interacting with the
moving object must emit a signal marking the completion of each subinter-
val. In his analysis of the Race Course, Grünbaum gives several examples
of runs that involve signs produced by the runner (Grünbaum 1968, 82–
86). In the two versions of the staccato run described above in Section 4,
each subinterval is marked by a pause in the motion. In another example,
also proposed by Grünbaum, the runner plants a flag on completing each
subinterval. For an example of a signal, consider a set of photo-emission
devices, one stationed at the end of each subinterval. Each device transmits
a light beam to a detector as the object completes its subinterval.

Since Zeno’s paradoxes are about the motion of physical objects, we
now ask whether the implementation of the infinite set of the signs or signals
required to indicate the completion of each of the subintervals violates any
of the laws of physics. From a practical point of view, it is of course
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impossible to either generate or process this infinite collection of signs
or signals. However, in this discussion, as in those of Grünbaum (1968),
Thomson (1970a and 1970b), and Benacerraf (1970) previously cited, we
do not consider practical limitations. We assume that a measurement of time
or position can be made with arbitrary precision and accuracy, as described
in the previous section. Moreover, we ignore questions concerning the
confirmation of the traversal of an interval that may be shorter than the
diameter of an atom. Nor are we concerned that an infinite number of
signalling devices, such as photo-emission devices, would be required to
monitor all of the subintervals or that there is no room for all of these
detectors.

The fundamental difficulty with implementing the signs and signals
required to indicate the completion of each of the subintervals involves
the Heisenberg uncertainty principle. (See Gottfried 1966 for details of
quantum theory.) This principle applies to all signs and signals regardless
of the details of the signing or signalling device. In order to confirm the
completion of each subinterval at the appropriate time, the runner’s position
must be known to an increasingly high degree of precision as he approaches
the end of the entire interval. One form of the uncertainty principle states
that if the uncertainty in position of some material object becomes small
as the result of a precise measurement of its position, then the uncertainty
in its momentum, and hence in its velocity, becomes large.

Suppose we make a determination of the position of the runner at the
time we expect the runner to complete the nth subinterval. The uncertainty
in this measurement must be small enough so that we can be sure that
the runner has indeed completed the subinterval at the appropriate time.
According to the uncertainty principle, as the uncertainty in our knowledge
of the runner’s position is reduced, the uncertainty in the runner’s velocity
must increase. As a result, it becomes less likely that a measurement of the
runner’s position at the time we expect the runner to complete the (n+1)st
subinterval will show that the runner is indeed completing that subinterval.
As n becomes large, the likelihood that the runner will be observed in the
appropriate subinterval becomes minuscule. The descriptions of the Race
Course in terms of Za- and Zb-runs are no longer equivalent.

It is important to note that this argument is completely general. In
particular, it applies to the staccato run and its modifications, to the pole
plant example and any conceivable refinements of it. Once the motion of
an object is interfered with as the result of a measurement of position,
its trajectory changes in an uncontrollable fashion. Unlike the situation in
classical mechanics, according to quantum mechanics it is impossible to
continually refine an experimental set-up so that the effects of the distur-
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bances to the system caused by a measurement can be reduced to a level
that is arbitrarily small.

It is not difficult to illustrate the application of the uncertainty relation
to the analysis of the Race Course. Denote the uncertainty in the position
and in the momentum of the runner by �x and �p, respectively. The
uncertainty relationship states that

�x ��p �
~

2
:

In this equation, ~, Planck’s constant divided by 2�, is equal to 1:0546�
10�34 Joule-sec.

Suppose the racetrack has length 1 m (meter) and is traversed in 1
s (second). These values are chosen for convenience. The velocity of the
runner is 1 m/s; the nth subinterval has length 2�n and it is traversed in 2�n

seconds. Assume, further, that the mass of the runner is 1 kg (kilogram).
Consider the 150th subinterval. This interval has length 2�150 m, which is
equal to 7:01� 10�46 m. Assume that the measurement of position as the
runner approaches the end of this subinterval has a relative uncertainty of
10%. Then �x equals 7:01� 10�47 m. The uncertainty in the momentum,
�p, is then 7:52� 1011 kg m/s. The uncertainty in the velocity, �v, is the
value of the uncertainty in momentum divided by the mass of the runner.
and so is numerically equal to the uncertainty in momentum. Thus, the
value of the uncertainty in the velocity is a factor of 752 billion times the
value of the velocity itself. By the time the runner is supposed to complete
the 151st subinterval, we will have no idea of where the runner is. Note
that changing the length of the race course, the time of traversal, or the
mass of the runner, even by factors of one hundred or one thousand, has
little effect on this argument. We might also point out that the length of the
150th interval is approximately 36 orders of magnitude smaller than the
size of an atom.

10. SUMMARY

MM applied Internal Set Theory to Zeno’s paradoxes of motion in the
hopes of avoiding the use of infinities that Zeno’s description seems to
entail. Although Internal Set Theory is useful as a formal tool for proving
mathematical theorems, its terminology and many of the results deducible
from it are not consistent with our intuitive notions of finiteness and our
perception of the real world. We therefore reject it as a possible technique
for analyzing Zeno’s paradoxes.
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In place of IST we substitute a constructive definition of the real num-
ber continuum, in which a real number is a family of intervals of rational
numbers (representing measurements) satisfying conditions of consistency
and fineness. This definition gives us a tool with which we are intuitively
comfortable and which represents the actual nature of scientific measure-
ment. The result of any scientific measurement is a rational interval, e.g.,
2:859� 0:004, and every real number is also a family of rational intervals.
Thus the questionable use of limits to capture the idea that the “true” value
of some measured quantity is a real number is replaced by the verification
that increasingly precise measurements of some quantity are consistent
and can, in principle, be made arbitrarily fine.

The notion of a real number as a family of intervals is particularly
felicitous when analyzing motion and time. Since periodic motion is used
to measure time, we can only speak of time quantitatively in terms of
intervals. The classical definition of a motion as a function � : I ! R is
then interpreted by considering a point � of the domain I as a family of
rational intervals (measurements of time). Via �, these intervals determine
a corresponding family of intervals (measurements of position) in R. The
value �(�) is then the real number determined by this family of position
intervals. Thus, position at a “point in time” is defined in terms of motion on
an interval. Using derivatives, velocity can be defined in a similar fashion.
This approach leads to a natural resolution of the Arrow paradox.

In order to resolve the Dichotomy, we combine this model of motion
with Vlastos’ distinction between Za and Zb-runs. A motion through an
interval I can be described in many ways as motions on families of subin-
tervals of I . Thus, in a conceptual sense, motion through some distance
may be described equally effectively as a single motion or as a collection
of possibly infinitely many submotions.

Finally, in a perceptual sense, we enquire whether physical measure-
ments can detect infinitely many submotions in a finite interval of time.
An affirmative answer requires that an infinite number of discrete acts
be performed in a finite time, since each measurement entails delineating
a submotion by some physical event. An arbitrarily precise infinite set of
measurements can be made without contradicting classical physics, but can
not be made in the context of quantum mechanics, due to the Heisenberg
uncertainty principle.

On the conceptual level, quantum mechanical restrictions do not apply.
As shown above in the discussion of the use of intervals in interpreting
motion, we are free to accept or reject the demand that the Race Course
be run as an infinite sequence of decreasing intervals. Either choice can be
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made in formulating an intuitively and mathematically satisfying resolution
of Zeno’s paradoxes of motion.

NOTE

� We would like to thank Professor Gabriel Stolzenberg for the use of his lecture notes on

real analysis and for many helpful discussions.
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