THE MATHEMATICS OF PHYSICAL QUANTITIES
PART I: MATHEMATICAL MODELS FOR MEASUREMENT

HASSLER WHITNEY, Institute for Advanced Study
INTRODUCTION

1. Purpose of this paper. To set up a physical theory, one constructs a
mathematical model, and considers its relation to certain aspects of the physical
world. There is a variety of models associated with the concept of measurement.
Certain systems of numbers are important; for instance:

N, the natural numbers; R*, the positive reals;
Qt, the positive rationals; R, the reals.

Commonly one takes R+ or R as a model for measurement. There are disad-
vantages in this, however. These models contain a specific number 1, and there
is no natural way of putting this number in correspondence with a particular
measurement; moreover, the models contain an operation of multiplication, with
no natural physical counterpart.

Let us consider the problem of choosing a model M for masses. An object 4
has a certain property which we call its “mass”; why not let this property itself
be an element of the model? As far as the structure of the model is concerned,
we need not theorize on what “mass” really is; we need merely give it certain
properties in the model. For instance, if we have distinct objects 4 and B, with
masses m4 and mp, we may think of the objects as forming a single object C;
its mass m¢ should then be m4+mp. Therefore M should contain an operation
of addition, and any further properties we choose.

The two types of models that best fit in most situations we shall call “rays”
and “birays.” A ray (like a half line) is used for positive measurements, and a
biray (like an oriented line with starting point), for measurements of quantities
both positive and negative. It turns out that numbers appear in a natural way
as operators on the model (see the next section).

In this paper we set up the theory of rays and birays; the real number system
is constructed along with the models in a natural manner. In fact, this approach
gives a simple and elegant way of introducing the reals and finding their basic
properties.

We shall not give applications of the models in the body of the paper; some
remarks on the subject will be made in this introduction. In this connection,
see Part II, which will appear in the next issue of this MONTHLY.

2. Numbers as operators on the models. If we choose a stick of length /,
and wish to use it to measure another stick, we lay out the first stick along the
second several times; we thus form /41, I+1+1, and so on. We also call these
lengths 21, 31, - - - . Thus N appears as a natural set of operators on our model.
For masses, there is a different physical process of addition; but again we may
use 2m =m-+m and so on, with the same set N of numbers.
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If we have a stick, whose length we call /, and we find a shorter stick, of length
I, such that 3)’ =/, then we wish to give an expression of I’ in terms of . It is
natural to set I’=(1/3)l. We may now set 2/'=(2/3)!/, and thus introduce Q*
as operators. Finally, if our model has a certain completeness property, we may
enlarge Ot to R+ as operator system, and if we have negative quantities, we may
enlarge R* to R.

3. Working in the model. Various properties of a model and its operations
have obvious meaning in the applications. For instance we have distributive
and associative laws:

5 cakes -+ 2 cakes = (5 + 2)cakes = 7 cakes
2yd = 23 ft) = (2 X 3)ft = 6 ft.

The fact that “2 yd” and “6 ft” name the same element of the model enables
us to say they are equal; there is no need for such mysterious phrases as “2 yd
measures the same as 6 ft.”

4. The use of units. If we wish to use Rt as a model for measuring (positive)
lengths, we must decide which length 1 corresponds toj; this length will then be
called our “unit length.” The more natural model is a ray L (on which R*
operates); since the elements of L themselves are “lengths,” the above question
does not arise.

If we choose a length Jy& L, and compare other lengths with it, we may call
lo our “unit”; this serves merely to remind us that J, is being kept fixed for a
period. Suppose we now find certain other lengths, for instance 5l,, 2o, 7l,. If we
wish to shorten our notations, and call these lengths 5, 2, 7, we are then replacing
L by R*. We can then say “the length 5 really means the length 5/,.” More
awkwardly, one could say “the length is 5 when measured in terms of /,.”

Suppose we wish to “change units,” say from ft to in. Then since, for any
aER*, a ft=a(12 in) =12a in, we would replace “the length a” by “the length
12a.” If any problems about units arise, they are at once resolved by going back
to the explicit phrase “a ft.”

5. The postulational treatment. Though all rays (and all birays) have the
same structure, one may wish to use several rays in a single investigation. For
instance, in mechanics, one uses separate rays M, L, T for measurement of mass,
length and time. (We study structures containing several rays in Part I1.) Hence
we introduce our models postulationally; the definitions show whether or not a
given structure is a ray or a biray. However, only a single structure R (or one of
its subsets) is needed for operators; hence we introduce R constructively. (We
give the characterization of R as a complete ordered field at the end.)

A basic theorem in the subject is an isomorphism theorem; a homomorphism
of one ray into another is necessarily an isomorphism onto, and has certain addi-
tional properties (and similarly for birays). This theorem is a great aid in setting
up the theory; in particular, with its use, multiplication in R* and in R is intro-
duced and its properties derived with a minimal effort.
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The postulates used for rays and birays are few in number and simple in
character, and correspond to simple experimental phenomena.

6. Other models. We introduce only the most important models. With the
real numbers at our disposal, and the facts about rays and birays, other similar
models are easily studied. For instance, in measuring masses, one wishes to allow
the mass zero (not present in a ray). This extra element may be introduced and
related to the remaining elements in the obvious manner.

A model of a somewhat different nature is an oriented affine one-dimensional
space T°*; this is the natural model for instance for moments in time (or positions
on a line). There is a corresponding biray T of translations of 7*; this is the
natural model for intervals of time (or directed lengths). We do not consider
models including for instance 3-dimensional space; the term “measurement”
is not the best term here.

If the measures of some type of quantity form a progression, as in counting,
it is natural to use NV for a model. However, if several such types of quantities
are considered together, it is better to use several isomorphic models. For a
plebeian illustration, suppose there will be six children at a party. We wish each

to have two balloons and three cookies. What is the total supply needed? The
answer is:

6(2 bl + 3 ck) = 6(2 bl) + 6(3 ck) = 12 bl + 18 ck.

7. A finite model. We have no infinite sets available in our environment.
What happens if we have a set G with a large number % of elements, called 1’,
2',- -+, n, and wish it to approximate to N? We could define a’+b’ to be
(a+0)’, or n' if n <a-+b. Note that we may set a’b’ =ab’; now G operates on it-
self, thus defining multiplication in G. We find that these operations are com-
mutative and associative, and the distributive laws hold. However, the cancella-
tion laws fail.

We give an instance from everyday life. Helen is setting the table for lunch
for four; she places two spoons at each place. Mother answers the doorbell; it is
Mr. and Mrs. Jones. Perhaps they will stay; Helen needs 4 more spoons. There
are only two left in the drawer, so Helen puts them out. (She thus makes
8,+4,=10,.) Hearing the visitors say goodbye, Helen thinks, take away four
spoons. She then realizes that, actually, she must take away only two. In her
model, 8,+4,=8,+2,.

CHAPTER I DIVISIBLE SEMI-GROUPS

This chapter is preliminary in nature; certain basic properties of rather gen-
eral structures are derived. It is shown how N appears as a system of operators
on any commutative semi-group, and Q¥, if the semi-group is “uniquely divisi-
ble.” To save space and help in the grasping of concepts, the proofs pertaining to
N are given in rather intuitive fashion. However, the Peano postulates are seen
to hold for NV; hence one may replace the proofs by the usual more formal proofs
where desired.
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8. Commutative semi-groups. We begin with the definition. »

DEeFINITION 8A. A semi-group (G, +) is a nonvoid set G and an associative
binary operation + in G. The semi-group is commutative if addition is commuta-
tive. Only the commutative case will be considered here.

We may define x+y-2 to mean either (x+v)+2 or x4+ (y-+3), since these
are the same. More generally, as is well known and easy to see, in any sum, the
terms may be written in any order, and parentheses may be inserted or removed
at will.

We wish to introduce a shorthand notation for such expressions as x-+x,
x+x-x, etc. Since the letter x plays no role here, let us think of it as replaced
by a dot. This suggests the expressions

x s x4+ x4z x2+x+xfx---
(8-1) O RECEED B CEEEED B CE |

We now consider the new expressions as being names for new objects, forming a
set V. It does not matter what these objects are; only their relation to G (or any
other semi-group) counts. We also set 1=(:), 2=(-+), 3=(---).

We next let N operate on G as follows:

(8.2) (x=2% ()x=x+2% (--)x=2x+4+ 2+ x,etc.
We give an elementary property of the operation:
(e+)=x+y=_>)+ (),
(Ne+N=GE+N+ G+ =G+ + O+ =02+ ()
(N +y =@+ + @+ +(x+9)
=@+tes+a)+O+y+y)=C0a+ ()
and clearly, in general,
(8.3) a(x+ ) = ax + ay (eEN; x9E0G).

With the obvious definition of “successor function” ¢ in N, the Peano postu-
lates are clear:

(N1) The element (+) =1 is not a successor: ax =1 for all xk € N.
(Ny) For all x5y, ax#ay; that is, the function o is one-one.
(Ns) Forany N'CN,f 1EN’, and xEN' implies cx S N', then N' = N.

We could now give proofs involving NV in the classical manner, using mathe-
matical induction, defining addition in N, and showing how to give definitions
by induction. We shall, however, continue to give intuitive derivations.

If we look at the pattern

Et+trz+2)+ xF)=x+2x+as+x+2
[ S T GRS S GO
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this suggests defining

The general rule is clear: To add two elements of N, place the corresponding
symbols beside each other, and remove the inner parentheses. The commutative
and associative laws are evident; hence (IV, 4) is a commutative semi-group.
Moreover, because of our definition,

()= (- Yo = [(---)+(--)]x,

and more generally,
(8.4) (e + b)x = ax + bx (e, EN, 2 €06).

Since (N, +) is a commutative semi-group, we may operate on it by N
itself, thus defining multiplication in N. This gives, for instance,

CGAC-)=C)F ), N )=C )G+ (o)

As a consequence,

GG e =[C) + Cole = ¢t Gz = Gl
and more generally,
(8.5) (ad)x = a(bx) (e, EN, z €G).

Letting NV operate on itself, (8.5) and (8.4) give the associative law for multi-
plication and the distributive law. The commutative law for multiplication must
be proved separately. The cancellation law: x+u =y-4u implies x =1, is obvious
from the representation of the elements with dots; a proof with the Peano postu-
lates is easily given.

9. Order in N, If we think of the elements of N as laid out in their natural
order, then ¥ <y means that x comes before y. The usual properties of order are
clear. For later purposes, we show how to derive the properties from the two
following properties of addition in N:

(a) For all @, bEN, a+b5#a.
(b) If ab, then either a+c="> or b+c=a, for some c.

Now write a<b if a+c=>b for some ¢. The following properties follow at
once from the definition:

9.1) a<a-tbd
(9.2) Ifa<band b <cthenea <ec.
(9.3) Ifa; <bi(i =1, -.,n) then Za; < Zbs

The trichotomy property is: For all @, bEN, exactly one of the following

is true:
a < b, a=b, b < a.
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For if ab, then (b) shows that ¢ <b or b <a. That at most one of these is true
follows from (a). (If a4+c¢=b, b+d=a, then a+(c+d) =a, contradicting (a).)

Order is related to addition by the property (writing “iffif” for “if and
only if”)

(9.4) e<b iffif et+c<b+e.
This is evident, using the cancellation law. Finally,
(9.5) a <b iffif ne < nb;

for by (9.3), a<b, a=b, b <a imply respectively nae <nb, na =nb, nb <na.
Rather than discuss subiraction here, we give the equivalent discussion when
studying rays, in section 14.

10. Some examples of semi-groups. We give first a general kind of example:

Example 10A. Let G contain the elements 1,2, 3, - - -, m, - - -+, n from N.
Let the successor function in G be as in N, except that we set on =m. Now addi-
tion is defined in terms of this function; we require

(10.1) x4+ 1 = ox, x4+ oy =a(x+ 3).

(These relations are used in defining addition in N through the Peano postu-
lates.) For instance, with m =35, n=7, the elements are 1, 2, 3, 4, 5, 6, 7; adding
3 and adding 4 gives respectively the sequences

4,5,6,7,5,6,7; 5,6,7,5,6,17,5.

Example 10B. Take m=1 in the last example. Then we have the ring of
integers mod #; » is the zero element.

Example 10C. Take m=n in Example 10A. This gives the example of Sec-
tion 7.

If G and G’ are semi-groups, their direct sum consists of all pairs (x, ') with
xEG, ¥’ €EG’. Define addition componentwise:

(xax,)_l-(yay’) = (x+y7xl+yl)'

This is clearly a semi-group, commutative if G and G’ are.

Example 10D. There are ten teaspoons and six dessert spoons in a drawer.
This gives us semi-groups G; and Gq as in section 7. In the direct sum G*, we
have for instance

(5;, Sd) + 3, 32) = (84, 6a).

If now we do not need to differentiate between teaspoons and dessert spoons, we
have sixteen spoons, forming a semi-group G’. There is a natural mapping of G*
into G’, in which for instance

(sb sd) - 108; (3ty 3d) g 63, (8:, 6d) — 14s.

Note that this mapping is not a homomorphism: 10,6, 14,.
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11. Divisible semi-groups. In the following definition, we make use of the
fact that NV acts on any semi-group.

DeriNiTION 11A, We say that the commutative semi-group (G, +) is divisible
if for each xEG and nEN there is a yEG such that ny=x. We say that (G, +) is
uniquely divisible #f the above y is unique.

Example 11B. The group N, of integers mod m (> 1) is not divisible; nor is
N itself. The semi-groups @+, R+, R are uniquely divisible. The group of dyadic
rationals, containing all /2" (k an integer, & N) is not divisible. The group of
rationals mod 1 is divisible, but not uniquely; the same is true of the reals mod 1,
or equivalently, of the multiplicative group of complex numbers of absolute
value 1.

The direct sum of a finite set of uniquely divisible commutative semi-groups
is uniquely divisible; in particular, any vector space over the reals is so.

DEFINITION 11C. An element x of G is idempotent if x+x=x. We say G is
idempotent if all its elements are idempotent.

In a group, only the identity element is idempotent.
TuEOREM 11D. If G is idempotent, it is uniquely divisible.

First, induction shows at once that nx =x for all z and x. Now given x and #,
set y=ux; then ny=ux. If also ny’ =x, then y' =ny' =x=ny=y.

Note that, therefore, the operation of N on an idempotent semi-group is
trivial.

Example 11E. Let U be a set, and let S be a set of subsets of U such thatif 4
and B belong to S, so does their union 4\UB. Then (S, V) is an idempotent
commutative semi-group.

REMARK 11F. It is a theorem that every idempotent commutative semi-
group is of the form of Example 11E.

DEFINITION 11G. Let us say that (G, +) separates N if for any two distinct
natural numbers m, n there is an x &G such that mx #nx.

We cannot then reduce N to a smaller set of operators on G, as was done
for instance in Section 7.

TreEOREM 11H. Any divisible commutative semi-group (G, +) which is not
idempotent separates N.

Suppose not. Then for some m and #, n=m+h and mx =nx for all x. For some
e and kb, m+a=Fkh. Now take any y&G. Choose x so that khx=y. Since mx
= (m+h)x, adding ax gives khx = (k-+1)hx. Adding hx gives (k+1)hx = (k-+2)hx.
Continuing gives khx =2khx, i.e. y=2y. Thus G is idempotent, a contradiction.

12. Introduction of Q+. We assume here that (G, +) is a uniquely divisible
commutative semi-group which is not idempotent. Then, using Theorem 11H,
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we have the properties
(12.1) ax = ay implies x = y (eEN;z,9vE€G6),
(12.2) ax = by for all x implies e = b (e, b EN; x €G).

Given x and a, there is a unique y such that ay=x; let us denote this ¥ by
the expression dx. Now, by definition,

(12.3) a(dx) = x (e EN; xE€G6).

We may now form a(dx). We would like to write this in the form (ab)x. To this
end, we must define new elements §, and give_ the whole expression meaning.
First, we show that (writing &’ to denote ')

(12.4) a(bx) = d'(F'x) (all x € G) iffif ab’ = d'b.
For, using (8.5) and (12.3) gives

(08") (a(bx)) = (ab')(b(bx)) = (ab’)x,
(88")(d'(b'x)) = (a'B)(¥'(¥'%)) = (a')s.

Now if the left hand side of (12.4) holds, then the above equations give (ab’)x
= (a'b)x (all x), and ab’ =a’b, by (12.2). The converse follows also, using (12.1).

Now consider the expressions ab as denoting new objects. Because of (12.4),
we wish an equivalence relation between these objects:

(12.5) ab~ d'b iffif ab’ = a'b.

(To prove that the relation is transitive, multiply ab’ =a'b by a'd"’ =a"’b’, giving
ab’a’b’ =a'ba’’b’, and apply the cancellation law in N, giving ab”’ =a''b.) Denote
the equivalence class of ab by a/b. Now let O be the set of equivalence classes
thus obtained. (We could shorten 15 to 5.) Note that ac/bc=a/b.

We now let Q+ operate on G, by setting

(12.6) %x =a(bx) (a5 E N;xEOQ).

Because of (12.4), the result is independent of the name a/b chosen for the given
element of Ot

Note that Tx =x; hence (a/1)x =a(1x) =ax. We therefore identify the element
a/1 of Q* with the element a of N, thus imbedding N in @+, and the operation
of N on G is preserved. (This is permissible; for (12.5) shows that a/1b/1 if
a#b.)

If bx = by, then x =b(bx) =b(by) =y. Hence also, using (12.1),

12.7) re =ryimpliesx =9y (rEQx,yEQG.)
The relation (12.4) gives:
(12.8) re = sx for all * € Gimpliesr = s (r, s € Q1)
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13. Properties of Q@+ and G. First we note that for any r=a/b € Q*, using
(8.5), b(rx) =b(a(bx)) =a(b(bx)) =ax. Hence

blr(x + y)] = a(x + 3) = ax + ay = b(ra) + b(ry) = b(rz + 1),
and applying (12.1) gives

(13.1) r(x+y) =rx+ry (re0t sy 0.
Next, since
—:-x +—§-x = a(bx) + ¢(bx) = (a + ¢)(bx) = a+¢:x,
we have
(13.2) a +c _ad +bc ad + be
‘ s T TR LT s

Hence it is natural to define

(13.3) —+—

Taking b=d =1 shows that this extends the definition in N. Now (13.2) gives the
distributive law

(13.4) (r+ s)x =rx+ sx (r,sE€QH2EG).

That the definition of s is independent of the manner of writing » and s may
be verified directly; it also follows from (13.2) and (12.8) (using some G).

Since addition and multiplication in N are commutative, (13.3) shows that
addition in Q% is commutative. Similarly, addition is associative. (Using G,
these properties follow easily, on applying (12.8).) Hence @t is a commutative
semi-group.

From the definition of addition in Ot we have

(a+a>+a 2a+a_3a
b b 5 b b b’

and similarly, in general,

(13.5) a na
. " — = —
b b
We can solve ns=r for s: If r=a/b, set s=a/nb. Thus Q% is divisible. If
n(a/b) =n(a’/b’), then (13.5) and (12.5) give na/b=na’'/b’, nab’ =na’b, ab’ =a'b,
a/b=a'/b’'; thus division (by elements of V) is unique. Clearly Q% is not idem-
potent.
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Now Q% operates on itself; we call this operation multiplication. This extends
the operation of multiplication in N. Because of (13.5),

(2D () ) - o

hence (12.1) gives

(13.6) 2Lz,
b d bd
We now prove the general associative law:
(13.7) r(sx) = (rs)x (r,s €E0t;x €G).

Say r=a/b, s=c/d. Then, with the help of (12.6) and (12.3),

(G5 - ) - e

this gives the result.
In particular, multiplication in Q* is associative; it is clearly commutative.
The distributive laws follow from (13.1) and (13.4). The cancellation law for

multiplication follows from (12.7). The existence and uniqueness of division is
clear: The solution of (¢/b)u=c/d is ’

13.8 == e + — O —
(13.8) “TITT T
In particular, 1/(a/b) =b/a.
The subtraction property in Q% is:
(13.9) If r5#s, then either r+¢t=s or s+4¢=r, for some ¢.

For we may write r=a/c, s=b/c; then ¢ b, hence b =a-+d or a=b-+d, and we
may use t=d/c.
The cancellation law for addition is also easy to prove: Suppose r+4s=r-+2.
Write r=a/d, s=b/d, t=c/d. Then a+b=a-c, hence b =¢, and s=¢.
The relation #-+s=r in Q¥ is impossible. Hence we may define order in Q%
as in NV (section 9), and Q* is now simply ordered.
CHAPTER II. RAYS

A “semi-ray” has certain properties needed for the measurement of positive
quantities: addition and subtraction, order, and the existence of arbitrarily small
elements. If the semi-ray is Archimedean, it may be completed to form a ray.

The operation of Q* on a ray is extended to the operation by R*; we find the
basic properties of R+ here.

14. Semi-rays. We shall not need divisibility in the definition; it will appear
as a consequence of completeness in the next section.
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DEFINITION 14A. A semi-ray L is a commutative semi-group such that:

(Ry) For all x and v in L, x-+y#x.

(Re) For all x and y in L with x#y, we can find u and v in L such that
x+utv=yor yt+utv=x.

DEFINITION 14B. x <y means that x+u =y for some u.

Since we now have properties (a) and (b) of section 9, we may deduce the
properties of order given there. We also have the cancellation law:

(14.1) Ifx+u=y+nthenx =y

For if x5y, then x<y or y<x, by trichotomy, and hence x+u <y-+u or
y+u<x-u, contrary to x+u=y-+u.

We now introduce subtraction. If x <y, then there is a unique element « such
that x+u=1y; we call this element y—x. Now

(14.2) p—2)+z=9 ifx<y
We give some simple properties:
(14.3) —9)—z=x—(y+32 ify4z2<u2,

2+ (y—2 ifz<y,
14.4 -3 =
(14.4) (@+2) —= {x—(z—y) ify<z<z+y.

To prove each one, add a quantity to each side which will remove the minus
signs. Thus, for the last equality, add z:

[t—(G—nN]+z=[s—(GE—n]+ -2 +]
=[e—GC=-M+G-—Pl+y=z+y=[a+3) —2]+3
now apply (14.1).

We now show that, owing to the particular form of (R:), L contains arbi-
trarily small elements:

THEOREM 14C. For each xE L and n &N there is some yE L with ny <x.

First, x+x#x; also x-+x+u-+vsx for all  and v, by (R1); hence, by (Rs),
we may find # and v so that

x4+ u+0v=2x4+ =

By (14.1), u+v=x. Either #<v or v<u; say #<v. Then u+u=u+v=x, and
u <2u Zx; the statement holds with #»=1. For the general case, we use induc-
tion: Say nz <x. Find y such that 2y =z. Then

n+VDy=ny+y=nly+y) Snz <

DEFINITION 14D. The semi-ray L is Archimedean if for each x and y in L there
is an nE&E N such that y <nx.
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Example 14E. Let L consist of all ordered pairs (x, 0) with x€R*, and (x, v)
with x€R and yER* (or y&EN); define addition component-wise. Then (L, +)
is clearly a commutative semi-group, and (R;) holds. To prove (R:), take
(x, )= (', ). If y=9', then say x<x’; now (x, y)+ (" —x, 0)=(x', ¥'). If
y#=y', say y<y';then (x,v)+ (' —x,9 —y)=(x',y"). Now takeu =v=%}(x' —x, 0)
or 3(x'—x, y'—9). Since n(1, 0) =(zn, 0) <(0, 1) for all #, (L, +) is not Archi-
medean.

15. Rays. We introduce completeness through Dedekind cuts.
DEFINITION 15A. Az upper set U in a semi-ray L is a set such that

(Uy) U= and U=L.
(Uy) If x€U and x<y then y& U.

We say the upper set U is strict <f also
(Us) If x& U then there is some y& U with y <x.

DEFINITION 15B. Given SCL, 2 is a lower bound for S if 2=« for all xES.
Also, z is a greatest lower bound (g.1.b. for short) for S is z is a lower bound, but
no z'>z 1s.

TueoreM 15C. Any subset of L has at most one g.1.b.
This is trivial.

DEFINITION 15D. The semi-ray L is complete if any strict upper set has a
g.l.b.

TueoreM 15E. If L is complete, then any upper set has a g.1.b.

Suppose the upper set U is not strict. Then for some & U, x <zimplies
x& U. Clearly z is the g.1.b. for U.

DEeFINITION 15F. A ray is a complete semi-ray.
TueoreM 15G. 4 ray is Archimedean.
For suppose not. Say nx <y for all n. Set

U = {u: nx < u for all nEN}.

Since x& U and y&E U, (U;) holds. Clearly (U.) holds also; hence U is an upper
set. By Theorem 15E, U has a g.1.b., say z. We show now that z <nx for some #.
If 2<x, then 2 <2x. Otherwise, x <z, and we may write x4y =3; now y <z also.
Therefore y& U, and we have y <mx for some m; hence z=x-+y < (m-+1)x =nx.
But nx is a lower bound for U, contradicting the definition of 2.

TueoreEM 15H. Any ray L is uniquely divisible.
Take any x and any #>1; suppose that ny =« for all y. Set
U={u€&L:x < nu}.
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By Theorem 14C, U= L. Since x& U, (Uy) holds. Using (9.5) in L shows that
(Uz) holds; thus U is an upper set, and has a g.L.b., say .

Suppose nz<x; say nz-+y=x. Find & by Theorem 14C so that nk <y; then
n(z+h) <nz+y=x and (9.5) shows that z+7 is a lower bound for U, a contra-
diction. Hence 7z > x, and we may write x+y=muz. Choose % so that nk <y. Now
nh <nz, hence k <z, and we may write v+h=2; now

x+y=—.nz=n(v+k)<ﬂ'v+3’,

hence x <nv, and v& U, contradicting » <z. We have proved that L is divisible.
Since 2’ <z implies ns’ <n3z, division is unique.
Since x <x+x, L is not idempotent, Hence (section 12) Q+ operates on any

ray L.

We give two facts about inequalities. For 7, s€Q* and x, yEL,
(15.1) r<s iffif rx < sz,
(15.2) x <y ifif rx <ry.

If r <s, say r+t=s; then rx +itx =sx, and rx <sx. Similarly, if » = s, then rx = sx;
hence if 7x <sx then r <s. (15.2) follows similarly.
Finally, we prove a density theorem:

(15.3) If x, v, 2L, x <y, then for some r EQ, x <rz<y.

Say x+u=y. For some nEN, nu>z. Set h=(1/n)z; then h<u. Also h<y, and
mh>7y for some m&N. Hence, for some k&N, kh<y=<(k+1)h. Set r=Fk/n;
then rz=kh<y. Also x+u=y=<rz+h <rz-u, and hence x <rz.

16. Completion of an Archimedean semi-ray. Such a completion is a ray;
in particular, we use this later to construct Rt from Q+.

LemMA 16A. If L is a semi-ray and xEL, then U(x)={uCL: x<u} is a
strict upper set.

For x& U(x), 2xE U(x), and (U;) holds. (Us) is clear. Say y& U(x); then
x<y. By (Rp), we may write x+u+v=y. Now x+uEU(x) and x+u<y,
so that (U;) holds.

LeMMmaA 16B. If U is an upper set in the Archimedean semi-ray L and h&L,
we may find 2EL such that 2&E U and 2+h & U.

Choose xE U, yE U. Say nh>y; then x+nh & U. Hence, for z, we may take
one of the elements x, x4, x+2k, « + -, x+(n—1)h.

LemmMa 16C. If U and V are strict upper sets in the semi-ray L, then
(16.1) U+V={u+v:uCEU, €V}
is a strict upper set; we have:

(16.2) Ifud Uv&V, thenu +veE U+ V.
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First, given u & U, v V, take any 2& U+ V, and write z=u'49', with ' E U,
'€ V; then u <u', v<v’, hence u+v <3z, and u+vGE U+ V.

Because of this, U+ VL. Clearly U+ V= . Properties (Up) and (Us;) for
U+V are clear.

TuEOREM 16D. Let (L, ) be an Archimedean semi-ray, let L* be the set of all
strict upper sets in L, and define addition in L* by (16.1); then (L*, +) is a ray.
The mapping x—U(x) of L into L* (see Lemma 16A) is one-one and preserves
addition; it thus imbeds L in L*.

With addition in L* defined by (16.1), we clearly have a commutative semi-
group. To prove (R;), take any strict upper sets U and V. Take k&t V, and find 2
for U by Lemma 16B. By (16.2), 2+h&F U+ V; since z+h& U, U= U+ V.

Next we introduce subtraction in L*. Suppose u1 & U, u1 € V. Then set

W = {w:forsomew’ <w,w +uEVirallu E U}.

We have VCW; hence W . We may write uy=u-+h, with «E U, then
h&EW, and Ws~L. Clearly (U;) and (U;) hold for W; hence W is a strict upper
set.

U |4

wl

A
| 1 { i |
1 1 i 1 ] ]
z 24k ' 4 v
N ——— S, ”

w

Clearly U4+WC V. Conversely, take any v& V. By (U;) for V and Theorem
14C, we may write v =v'+2h, with /€ V. By Lemma 16B, find 2& U such that
z2+hE U. By (Uy) for U and for V, 2<u1<v'; hence we may write z+w'=v". Set
w=w'+h Now if €U, then u>z, and hence w'+u>w'+2=0v'EV; thus
w’+u & V. This shows that w&EW. Also z+rE U, wEW, and z+h+w=v; thus
vE U+ W, proving that U+W=7T1.

Next, with W as above, choose x so that 2x & W. Since 2x& U(x), we can find
W’ by the proof above so that U(x) + W’ =W. Now we prove (R,). Given U and
V with UV, either UQCV or VQ U, say the former. The proof above gives
U+ U(x)+W'=V, as required. Thus (L*, +) is a semi-ray.

To prove that L* is complete, take any strict upper set U¥CL¥*. The ele-
ments of U* are strict upper sets in L; let .S be their union. Since U*# ¢,
S# . Since U*s£L*, there is a strict upper set U U*. Take x& U. For any
U'cU* U<U' (in L*), by (Up) for U*; hence (Definition 14B) U4+W=U"
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for some W, and thus x& U’. This shows that x&S, and S L. Properties (Us)
and (Us) for S are clear; thus S is a strict upper set in L, i.e. SEL*. Since
U& U* implies UC.S and hence SS U in L*, S is a lower bound for U* in L*.
If S<§ in L*, then S+W=S, and there is some xS with x&£S’. Now x&U
for some U& U*, and hence U<.S’ in L*; thus S’ is not a lower bound for U*.
Therefore S is the g.l.b. of U* in L*, proving completeness.

Suppose x<y. Then say x+u-+tv=y; it follows that x+uEU(x), x+u
G U(y), and U(x)# U(y). Thus the mapping x— U(x) is one-one.

We must show still that U(x+y) = U(x)+ U(y). Suppose & U(x+7y); then
x%+y <3, and we may write x+y-+u-+v=2 Now x+uE U(x) and y+vE U(y),
and thus 2E U(x) +U(y). Thus U(x+y)CU(x)+ U(y). The converse is clear,
and the proof is complete.

Suppose we form the completion L* of the ray L. Each element U of L* is a
strict upper set in L; it has a g.1.b., say x. The properties of strict upper sets show
at once that U= U(x) (compare Lemma 16A). Thus the mapping x—U(x) of L
into L* is onto, and we may identify L* with L itself.

- 17. The isomorphism theorem. We shall show that there is essentially only
one kind of ray; any two rays are isomorphic. All homomorphisms are iso-
morphisms; we find them all. For further information, see Section 19.

DEFINITION 17A. Let (G, +) and (G', +) be commutative semi-groups. A map-
ping ¢: G—=G' is a homomorphism if ¢(x+y) =d(x)+¢(y) for all x and y in G.
It is an isomorphism if it is also one-one, and is onto G’ if the image of G is all
of G'.

THEOREM 17B. Let ¢ be a homomorphism of the ray L into the ray L'. Then

(17.1) ifx <y then ¢(x) < ¢(y),
(17.2) ifr € QF  then ¢(rx) = ré(x).

If x <y, write x+u=1y; then ¢(x) +-¢ (%) =¢(y), and hence ¢(x) <¢(y). Next
for any #, ¢(x+ -+« Fx)=¢x)+ : + - +¢(x) (» terms in the sums); hence
o(nx) =np(x). Also, if y=(1/m)x, i.e. x=my, then ¢(x)=mep(y) and hence
o (y) = (1/m)p(x), from which (17.2) follows.

TaEOREM 17C. Let L and L' be rays, and suppose weL, w' &L'. Then there
15 a unique homomorphism ¢ of L into L' such that ¢(w) =w'. Any homomorphism
of L into L' is an isomorphism onto L'.

For each x& L, set
Ul = {y € L':for some r € @+, < rwand rw’ < y'}.

We see at once that U/ is a strict upper set in L’; hence (see the end of Section
16) for a certain x’'&L’, U; =U'(x’), with U’(x’) defined as in Lemma 16A.
Set ¢(x) =x'.

We show that
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(17.4) Unpy = U + UL,
If /€U + U/, then g’ =x'+y', with ' €U/, y'E U, . For some 7, s&Q+,
x < rw, rw’ < y < sw, sw' < 9.

Now x+y<(r+s)w, (r+s)w’<s’, and hence z’E U/, Conversely, given
2’ & Uiy, we may find 7, , v so that x+y4u-+v=rw, rw’ <z'. By (15.3) we may
find s, tEQ* so that

< sw< x4+ u, y<Ltw<y-+o

Now (s+H)w<rw, and by (15.1), s+t<r, (s+8)w’' <rw’<z’. We may write
(sw'+u’) + (tw' +v") =2'. Since sw’+u'EU; and tw’'+v' E U, , we have s’ S U/
+ U,/ , proving (17.4).

Recalling that U,/ = U'(¢(2)) and U'(x')+U'(y') = U’'(x'+9') (see the end
of Section 16), (17.4) gives

Ud(x+ 3) = Uiy = U'(¢(x)) + U'(6(») = U'(¢(x) + ¢(5));

hence ¢(x+y) =¢(x)+é(y), and ¢ is a homomorphism. Now we may apply
(17.1), showing that ¢ is one-one.

Next we show that if ¢’ is any homomorphism of L’ into L such that
¢’ (w') =w, then ¢(¢'(x")) =« for all ¥’ €L'. Set x=¢'(x’), y' =¢(x). If ¥’ <x’
we may find 7&Q* such that ¥’ <rw’ <x’. Then by Theorem 17B for ¢/, rw
=¢'(rw’) <¢'(x’) =%, and hence, applying ¢, rw’ <y, a contradiction. Similarly
%' <y’ is false; hence y' =x/'.

Because of this, ¢ maps L onto L’. Also, for another ¢, like ¢, we have
1(¢’ (x")) =x'=¢ (¢’ (x")), and since ¢’ is onto L, ¢1(x) =¢(x) for all x; thus ¢ is
uniquely determined, and the proof is complete.

18. Introduction of R+, We saw in Section 13 that Q* is a completely divisible
commutative semi-group; also, that »+4s=r is impossible in Q*, so that (R;)
holds. Given 7, s€Q*, choose t&Q* by (13.9); set u=v=1¢/2; then either r+u
+v=s or s+u-+v=r, proving (R;). Therefore Q+ is a semi-ray. Given r, s€Q*,
we may writer=a/c, s=b/c; then since ba 2 b, (13.5) shows that b7 = s. Therefore
Qt* is Archimedean. We may now apply Theorem 16D, giving the completion
R* of QF; Rt is a ray, and we may consider Q* as imbedded in R+, by the defini-
tion r—{s€Q*: r<s}.

19. The operation of R* on L. For each x in the ray L, let ¢, be the homo-
morphism of Rt into L given by Theorem 17C, such that ¢.(1) =x. By (17.2),

é:(r) = ¢x(r-1) = ré;(1) = ra, (r € Q*);
hence, if we set
(19.1) ax = ¢,(a) (e € Rtz & L)’

this extends the operation of Qt to an operation of R* on L. Note that
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(19.2) 1z = x.

Since ¢ is a homomorphism, we have
(19.3) (a + b)x = ¢.(a + b) = ¢.(a) + ¢.(b) = ax + bax.

Given x and v in L, set ¥(a) =¢.(a) +¢,(a) (all aERT); then ¢ is a homo-
morphism, and ¢ (1) =x-+y. By uniqueness in Theorem 17C, ¢ =¢,,. Hence
(19.4) a(z + 9) = ¢ors(a) = ¥(a) = ¢:(a) + ¢u(a) = ax + ay.

Since Rt is a ray, R* operates on itself as above; let ®, be the corresponding
functions. We call this operation multiplication in R+. Thus

(19.5) ab = ®(a); &(1) = b.

Since the operation of R+ on R+ extends the operation of Q* on R+ and hence of
Q@+ on Qt, and the latter operation is multiplication in Q*, multiplication in R*
extends that in Q.

The above distributive laws give, in R*,

(19.6) (e + d)c = ac + be, a(d + ¢) = ab + ac.

Set ¥(e¢) =a; ¥ is a homomorphism, and ¥ (1) = 1. By uniqueness, ¥ =%,. Hence
al=®,(a) =¥ (a) =a. Also, since 1&EQ* (or, by (19.5)), la=a. Thus

(19.7) la = al = a.

We can divide in R*: Given a, b&ER*, since ®, is onto R*, we can find cERt
such that ca =®,(c) =b.

Given bER* and xEL, let Y be the composite mapping ¢, o ®y; this is a
homomorphism of R+ into L. Since

¥(1) = ¢u(Bu(1)) = ¢2(8) = bz,

uniqueness shows that ¥ =¢s.. Hence we find the general associative law:

(19.8) a(b%) = ¢ua(a) = ¥(a) = 6.(Pe(a)) = ¢.(ad) = (ab)2.
In particular, taking L=R*,
(19.9) a(bc) = (ab)c.

If we set ¥,(a) =P,(b), then the second part of (19.6) shows that ¥, is a
homomorphism. Since ¥3(1) =b1=b=%(1), ¥,=%, and

(19.10) ba = ®,(3) = Vy(a) = ®(a) = ab.

THEOREM 19A. The operation of Rt on L extends the operation of QF; we have
properties (19.1) through (19.10), and also:

(V1) For each x and y in L there is an a ER* such that ax =1.

(Vo) If ax=ay then x=y.

(Vi) If ax=bx then a=b.
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To prove (Vy), recall that ¢, is onto L; hence for some ¢, ax=¢.(a)=7.
To prove (Vy), set c=1/a; then ax=ay gives c(ax) =c(ay), and by (19.8) and
(19.2), x =1. Since ¢, is one-one, (V3) holds.

We now extend (17.2):

THEOREM 19B. If ¢ is a homomorphism of the ray L into the ray L', then
(19.11) o(ax) = ag(x) (e ERY,xE L).

To show this, take any fixed x &L, and set ¥(a) =¢(ax), 0(a) =ap(x). Using
(19.3) in L and in L’ shows that ¢ and 6 are homomorphisms of R* into L’. Since
(1) =6(1), uniqueness in Theorem 17C shows that ¥ =0, as required.

CHAPTER IIL. BIRAYS
A biray is constructed from a ray by adjoining a zero element and negative

elements. The biray constructed from the ray R* is the group of real numbers;
multiplication in R is defined through the operation of R on itself.

20. Definition of birays. Essentially, a biray B is a commutative group con-
taining a ray B, such that if x>0 then x or —x is in B*.

DEerFINITION 20A. A biray (B, B*, +) is a set B, a subset B*, and an operation
of addition in B, such that:

(B1) (B, +) is a commutative semi-group.

(B2) (B*, +) is a ray.

(Bs) For each x, yE& B there is a 2E B such that x+z=1y.

(By) If x#y, x+2=1y, and y+3' =x, then 3EB* or 3’ & B+,

We prove first the cancellation law:
(20.1) Ifx+z=x2+42 then z=72.

For suppose z#z. By (Bj3), we may write z+u=2/, 2 +v=2 By (B4), one of
u, v is in Bt; say u € B*. Now use (B;) to write x+z+w=u. These relations give

ut+u=xs+zt+twtu=x2+7+w=a2+z+w=u

But #& B+, contrary to (By) and (R;) (see Section 14).
We now find the zero element of B. Choose x,&B+. Choose 0&B so that
x0+0=x,, by (Bs). We show that for all x& B,

(20.2) x4+ 0 ==
By (B;3), we may write x=x,+7v. Now x+0=y+4x,+0=y+4x,=x. Moreover,
(20.3) ifx+u%==x then u =0,

by the cancellation law; hence the zero element 0 is uniquely defined by (20.2).
We now know that (B, ) is a commutative group.

DEFINITION 20B. For x&B, —x 1s the element such that
(20.4) x4+ (—2x) =0;
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set also
(20.5) z—9y =214 (~9).
We have
(20.6) F=nN+y=z+[(-nN+r]=2+0=u
Using this gives
(20.7) y=3—2x iffif z4+y=2
(add «x in the first equation; add —x in the second). Also
(20.8) —-0=0, —(—2) = x;

for 0+0=0; also (—x)+x=0, (—x)+(—(—x))=0, and the cancellation law
gives the second part of (20.8). Some further elementary properties are:

(20.9) —@+y) =(=x)+(—y) =—x—y,
(20.10) —(x—y) =y—gx
(20.11) —2)+@—w) =@&+y) — (+ ).

We may prove each directly from (20.4) and (20.5). Or, we may add something
to both sides and apply (20.1). For instance,

~@x=Nta=—@—y)+[r-2»+s]=0+y=y,
and also (y—x)-+x=1y; hence (20.10) follows.
21. Order in birays. We first consider negative elements.

DEFINITION 21A. B~ is the set of all x such that —x&B*. The elements of B*
are positive; those of B~ are negative.

We prove trichotomy: Each element of B is zero, positive or negative, and is
only one of these.

Given x, at least one holds; Jor if x40, then since x+(—x) =0 and 0+x=x,
applying (B.) shows that x is in B* or in B~. At most one is true. For, since
(B*, ) satisfies (Ry) (Section 14), and 0+0=0, 0 B*. Also, if x&B—MNB,
then —x and x are in B+, and by (B:), 0=x-4(—x) EB, a contradiction.

DEFINITION 21B. x <y means that y—x & B*.

Because of (B;), order is transitive. The trichotomy above is equivalent to
trichotomy in terms of order (Section 9). Thus B is simply ordered. The prop-
erties (9.2), (9.3) and (9.4) clearly hold. Note that

(21.1) —x < —y iffif y <z

One may introduce absolute values in terms of order. Note that if x<vy and
y=<x, then x=v. Hence the following definition makes sense:

(21.2) If x <y, then set inf{x, y} = x, sup{x, y} = y;
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set
(21.3) | #| = sup {&, —«}.

The derivation of properties of absolute value is standard; we need not go into
it here. The definitions of inf {xl, ceey, x,.} , sup {x1, cee, x,.} are clear.

22. The isomorphism theorem. We prove:

THEOREM 22A. Let (B, B*, +) and (B’, B'+, +) be birays. Take any w0
in B and any w' in B'. Then there is a unique homomorphism ¢ of (B, +) into
(B’, +) such that ¢p(w) =w'. If w' %0, then ¢ is an isomorphism onto B'. If w and
w’ are both positive or both negative, then ¢ carries B onto B'+ and B~ onto B'—, and

(22.1) o(x) < ¢(y) iffif % <y;
if one of w, w' is positive and the other negative, ¢ has the opposite effect.

See also Theorem 24A.

Suppose first that w and @’ are positive. By Theorem 17C, there is a unique
homomorphism ¢+ of Bt into B’* such that ¢*(w)=w'; hence the restriction
qS]B"' of ¢ to B+ must be ¢+. We must have ¢(x) =¢(x+40) =¢(x) +¢(0), and
hence ¢(0) =0 (letting 0 denote the zero element in both birays). Also we must
have ¢(x) +¢(—x) =¢(x+(—x)) =¢(0) =0, and hence ¢(—x) = —¢(x). Thus ¢,
if it exists, is unique. We may use these equations to define ¢ outside B*.

To prove that ¢ is a homomorphism, we examine ¢(a-+@) for any o, BEB.
The case that =0 or 8=0 is clear, and the case @, BEB* is known. The re-
maining cases are as follows: For x, y& B,

d(— + (=) = ¢(— (= + ) = —¢( +3) = —[8(2) + ¢(5)]
—¢(x) — ¢(3) = ¢(—2) + &(—3);

$(x + (—x)) = ¢(0) = 0 = ¢(x) — ¢(2) = ¢(2) + ¢(—2);
ify <z then oz + (=) =&z — ) = ¢(x) — 6(3) = ¢(x) + ¢(—2);
ifx <y then ¢(x+ (—3) = ¢(—(y — %) = —d(y — %)

= —[80) — ¢(®)] = ¢(=) + &(—2);
also ¢((—x) +y) =¢(y+(—x)), and the above applies.
Since ¢+ is an isomorphism onto B+, ¢ carries B+ onto B’+ and B~ onto B'~.

Thus ¢ is onto B’. That ¢ is also one-one and is therefore an isomorphism is clear.
If x <y, say x+z=7, s&B*+. Expanding ¢(x+2) shows that (22.1) holds.

Next suppose that w is positive and %’ is negative. Set w” = —/, and let ¢’
be the homomorphism of B into B’ with ¢’'(w)=w"'; then we see easily that
¢(x) = —@'(x) is the unique required isomorphism.

If w is positive and @’ =0, we show that ¢(w) =0 for all xEB. If x&B* and
é(x) EB*, then by Theorem 17C, ¢(y) EB* for all yE B+, contrary to ¢(w) =0.
If xEB* and ¢(x) EB-, then ¢’ = —¢ is a homomorphism with ¢’(w) =0 and
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¢'(x) EB*, and we again have a contradiction. Thus ¢(x) =0, all x&€B*. The
case that x& B~ is similar.

Finally, if w is negative, using the pair (—w, —w’) in place of (w, w') gives
again the required properties.

23. Construction of a biray from a ray. Given a ray (B*, +), we construct a

corresponding biray (B, B*, +). The elements of B are those of B*, called posi-
tive, a new element 0, and for each element x of B*, a new element x*; the latter

form B-, the negative elements of B. We shall use x, 9, + + - to denote elements
of B+, and a, 8, - - -+ to denote elements of B (including B+). We define addition
in B as follows:

(23.1) a+0=aq,

(23.2) x4 a*=0,

]

{ x—y i y<uwz,
(y—2)* if #<y,
(23.4) o* 4+ 9% = (2.4 )%
requiring addition to be commutative gives the remaining cases.

To prove properties of addition it is convenient to introduce new names for
elements of B (corresponding to the “ordered pair” definition of negative num-
bers): For any x, yEB*, set

(23.3) x4+ y*

(23.5) [x, y] = = + y*.
As a consequence, for x, y, & B,
(23.6) [y + 3z, }'] = 2, [x: x] =0, [xy x + Z] ="2%;

this shows that each element of B has new names.
We show now that

(23.7) [x, 9] = [, ] iffif y=y"

Suppose [x, y] =[x, y']. From (23.5) and trichotomy we see first that whichever

case in (23.2), (23.3) applies to x and ¥ also must apply to x and y’; now if y <x,

x—y=x—7v" implies y=7’, and the situation is similar in the other cases.
Applying (20.11) to (23.2) or (23.3) shows that

(23.8) [ 42,9 + 2] = [x,9].

Next, since [x, ¥] = [x+u, y+u] and [«, v]= [x+u, x+v], (23.7) gives
(23.9) [z, y] = [u, 0] iffif 24+v=19+u

We are now ready to prove that
(23.10) [x, 9] + [u, 0] = [x + u, v + o].

For [x, y] there are three cases to consider: [y+z, y], [x, x] and [x, x+z]; sim-
ilarly for [u, v]. Some of these cases are:
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[z, 2] + [u, 0] = 0+ [u, v] = [, 9] = [x + u, x + ],
y+z,9]+v+wo]l=24+w=[y+s+v+wy+1],
e, s+ 2]+ [wutw]=s*+w*=G+w)*=|c+ux+2z+u-+w],
if w<sz then
b+sy]l+luutw]=z24+w*=2—w=[y+ (z—w),]
=b+stuy+utw,
if w<z then
b+l +mutw]=(@w-2*=[yy+@w-2]
=lb+zt+uy+utw];
b+zy]l+lu,uts]=2+2*=0=[y+z4+uy+u+3];

the remaining cases are taken care of by commutativity.
Applying (23.10) twice gives

(2, 9] + [w, o)) + (oo g =[x+ ) + £, (0 + v) + gl;

now associativity in B* gives associativity in B. We now have (B:) and (B;) for
(B! 'B+’ +)'
To prove (B;), we need merely note that

(23.11) [yl +[u+y,o+2]l=[x+u+y,9+0+ 2] = [0

Next we prove the cancellation law, through the implications
[2, 9] + [, 0] = [, 9] + [p gl = s+, y + o] = [+ 5,5+ g]

=stutytg=ytotatpsutg=0+p=[u]=1[pql.
To prove that (B4) holds, suppose that
[o, 9] # [w,0],  [5,9] +a=1[u0l, [u0+8=I[xy]
By (23.11) and the cancellation law, we then have
a=[u+y0+ 2], B=[x+09+ul

Now by (23.9), x+v=y-+u; hence either x+v<y-+u and e EB+ or x+v>y+u
and SE B+,

We have now proved that (B, B+, +) is a biray.

REMARK: An alternative proof may be given as follows: First show that

fzt+a=s3+8 2> |a|+|8|, thena=4g;
this is easy. Next, considering several cases, we find:

Ifz> |a|+ |8] then z+ (a+8) = (z+a) +5.
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Using these gives at once:
Itz> |a| + [8] + 7] then z+[@+B) +rl=s+[a+@+];

this gives the associative law. To prove (B;), use x+ (x*-+8) =8, x*+ (x+3) =8.
Finally, (B.) is proved by considering several cases.
There is essentially only one biray containing a given ray:

TuEOREM 23A. If (B, B, +) and (B, B, +) are birays, then there is an iso-
morphism ¢ of the first onto the second, defined by $(0)=0', and ¢(x) =x, ¢p(—x)
=—x, (xEB).

Here, the first “ —x” is interpreted in B, and the second, in B’; see Definition
20B. The theorem follows at once from Theorem 22A, choosing some w=wn'
in Bt.

24. The operation of R on a biray. First, define (R, R, +) to be the biray
constructed from (R*, +) as in Section 23; by Theorem 23A, this is (up to iso-
morphisms) the only biray containing (R+, +) as its positive part.

We now define the operation of R on any biray (B, B, +). For each a EB,
let ¢, be the homomorphism of (R, R+, +) into (B, B, +) given by Theorem
22A, with ¢.(1) =a; set

(24.1) aa = ¢.(a) (e ER,a &€ B).

This extends the operation of Rt on the part B* of B. Exactly as in Section 19,
we find (always using @, b, - -+ - ER; @, B, - + + €EB)

(24.2) (¢ + b)a = aa + ba, a(a + B8) = aa + ap.

Since (R, Rt+, +) is a biray, it operates on itself; this operation we call mult-
plication in R. Now

(24.3) (a + b)c = ac + ac, a(d + ¢) = ab + ac.

There is no harm in identifying the zero element in different birays; in par-
ticular, in R and in B. Since ¢, is a homomorphism, ¢.(0) =0. We now have
(compare Section 19)

(24.4) la = a, Oa = a0 = 0,

(24.5) la = al = g, 0z = a0 = 0.

Again as in Section 19,

(24.6) a(ba) = (ad)a, a(bc) = (ab)c, ab = ba.

We now show that we can divide in R. Given @, bER with a0, the homo-
morphism &, of R into itself with $,(1) =a is an isomorphism onto R (Theorem
22A); hence for some cER, ca =P,(c) =b.
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THEOREM 24A. If ¢ is a homomorphism of the biray B into the biray B’, then
(24.7) ¢(aa) = ad(a) (e ER, a € B).

The proof of Theorem 19B applies, using Theorem 22A (which holds also for
the case that ¢ (a)=0).

THEOREM 24B. (R, +, X) is a complete ordered field, unique up to isomor-
phisms.

We have proved that we have a field; it is ordered. Since Rt is complete,
the proof that R is complete (using Dedekind cuts) is simple. Suppose (R’, 4+, X)
is another such field. Then 1ER*, 1’ER’t. Let ¢ be the corresponding homo-
morphism of birays, with ¢(1) =1’; this is an isomorphism onto R’, by The-
orem 22A.

Now take any fixed b, and set

¥(a) = ¢(ab),  0(a) = ¢(a)o(b).
Then
Y(a1+ a2) = ¢((a1 + a2)b) = ¢(a1b + azb)
= ¢(a10) + ¢(azd) = Y(a1) + ¥(aa),

and similarly 6 is a homomorphism. Since 0(1) =1'¢(b) =¢(b) =¢/(1), Theorem
22A shows that Y =0; that is, ¢ is a multiplicative homomorphism. Since ¢(1)
=1’, ¢ maps R* onto R't. Thus ¢ is an isomorphism of ordered fields.

Note that ¢ is the only such isomorphism; for we must have ¢(1) =¢(1-1)
=¢(1)¢(1), and since ¢(1) =0, p(1) =1".

TraEOREM 24C. For any biray B, we have:
(VY) For each oo and B in B, a0, there is an a ER such that aa=0.
(V3) If ae=aB, a0, then a=p.

3) If aa=ba, a0, then a=b.

The proofs are like the corresponding proofs in Theorem 19A; we use the fact
that if @0 then ¢, is onto B and is one-one.

THEOREM 24D. Any biray (B, B*, +), with the operation of R, is an oriented
one-dimensional vector space over R, and conversely.

By (24.2), (24.6) and (24.4), the biray is a vector space; it is oriented by the
choice of B* as “positive” part. Because of (V}), it is one-dimensional. Con-
versely, any such space satisfies the postulates for a biray, and the operation
by R is the same as that defined here.
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