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The mathematical continuum, like number, consists of mere possibility . . .

G. W. Leibniz
Die philosophischen Schriften

Band II, p. 475

Abstract. In his monograph On Numbers and Games, J. H. Conway introduced a real-

closed field containing the reals and the ordinals as well as a great many less familiar numbers

including −ù, ù/2, 1/ù,
√
ù and ù − ð to name only a few. Indeed, this particular real-

closed field, whichConway callsNo, is so remarkably inclusive that, subject to the proviso that

numbers—construedhere as members of ordered fields—be individually definable in terms of

sets of NBG (von Neumann–Bernays–Gödel set theory with global choice), it may be said to

contain “All Numbers Great and Small.” In this respect, No bears much the same relation to

ordered fields that the system R of real numbers bears to Archimedean ordered fields.

In Part I of the present paper, we suggest that whereas R should merely be regarded as

constituting an arithmetic continuum (modulo theArchimedean axiom),Nomay be regarded

as a sort of absolute arithmetic continuum (modulo NBG), and in Part II we draw attention
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to the unifying frameworkNo provides not only for the reals and the ordinals but also for an

array of non-Archimedean ordered number systems that have arisen in connection with the

theories of non-Archimedean ordered algebraic and geometric systems, the theory of the rate

of growth of real functions and nonstandard analysis.

In addition to its inclusive structure as an ordered field, the system No of surreal num-

bers has a rich algebraico-tree-theoretic structure—a simplicity hierarchical structure—that

emerges from the recursive clauses in terms of which it is defined. In the development of No

outlined in the present paper, in which the surreals emerge vis-à-vis a generalization of the von

Neumann ordinal construction, the simplicity hierarchical features of No are brought to the

fore and play central roles in the aforementioned unification of systems of numbers great and

small and in some of the more revealing characterizations of No as an absolute continuum.
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Introduction

“Bridging the gap between the domains of discreteness and of continuity, or
between arithmetic and geometry is a central, presumably even the central
problem of the foundations of mathematics.” So wrote Abraham Fraenkel,
Yehoshua Bar-Hillel and Azriel Lévy in their mathematico-philosophical
classic Foundations of Set Theory [1973, pp. 211–212]. Cantor andDedekind
of course believed they had bridged the gap with the creation of their arith-
metico-set theoretic continuum of real numbers, and for roughly a century
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now (despite a host of constructivist, predicativist and infinitesimalist chal-
lenges)1 it remains one of the central tenets of standardmathematical philos-
ophy that indeed they had. In accordance with this view the geometric linear
continuum is assumed to be isomorphic with the arithmetic continuum, the
axioms of geometry being so selected to ensure this would be the case. Given
the Archimedean nature of the real number system, once this assumption is
adopted we have the classic result of standard mathematical philosophy that
infinitesimals are superfluous to the analysis of the structure of a continuous
straight line.
More than two decades ago, however, we began to suspect that while the
Cantor–Dedekind theory succeeds in bridging the gap between the domains
of arithmetic and of standard Euclidean geometry, it only reveals a glimpse
of a far richer theory of continua that not only allows for infinitesimals
but leads to a vast generalization of portions of Cantor’s theory of the
infinite, a generalization that also provides a setting for AbrahamRobinson’s
infinitesimal approach to analysis aswell as for the non-Cantorian theories of
the infinite (and infinitesimal) pioneered byGiuseppe Veronese [1891; 1894],
Tullio Levi-Civita [1892–1893; 1898], David Hilbert [1899; 1971] and Hans
Hahn [1907] in connection with their work on non-Archimedean ordered
algebraic and geometric systems, and by Paul duBois-Reymond [1870–1871;
1875; 1877; 1882], Otto Stolz [1883; 1885], Felix Hausdorff [1907; 1909;
1914] and G. H. Hardy [1910; 1912] in connection with their work on the
rate of growth of real functions, theories that have been enjoying a resurgence
in interest in recent decades. Central to our theory is J. H. Conway’s theory
of surreal numbers [1976; 2001], and the present author’s amplifications and
generalizations thereof, and other contributions thereto [Ehrlich 1988; 1989;
1989a; 1992; 1994a; 2001; 2001 (with van den Dries); 2002a; 2011].
In anumber of earlierworks [Ehrlich 1987; 1989a; 1992; 2005; forthcoming
1], we suggested that whereas the real number system should be regarded as
constituting an arithmetic continuum modulo the Archimedean axiom, the
system of surreal numbers (henceforth, No) may be regarded as a sort of
absolute arithmetic continuum modulo NBG (von Neumann–Bernays–Gödel
set theory with global choice).2 In Part I of the present paper we will outline
some of the properties of the system of surreal numbers we believe lend

1For a survey of many of the constructivist, predicativist and infinitesimalist challenges
together with numerous references, see the author’s [2005]; for the historical background of
several of the infinitesimalist challenges, see the author’s [2006] and [forthcoming 2]; and
for additional references to infinitesimalist approaches not referred to in the just-mentioned
works, see the author’s [2007].
2In a related work [Ehrlich 2010], we also introduce a formal replacement for the extension

of the classical linear continuumsketchedbyCharles Sanders Peirce [1897; 1898; 1898a; 1900]
at the turn of the twentieth century, and show that by limitingNo to its substructure consisting
of its finite and infinitesimal members, one obtains a model of this Peircean linear continuum,
as we call it.
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credence to this mathematico-philosophical thesis, and in Part II we will
draw attention to the unifying framework the surreals provide for the reals
and the ordinals as well as for the various other sorts of systems of numbers
great and small alluded to above.
In the construction of No presented below, which differs markedly from
Conway’s construction, the surreals emerge vis-à-vis a generalization of the
von Neumann ordinal construction. In accordance with this construction,
each surreal number x emerges as an orderly partition (L,R) (see §3.1 for
definition) of the set of all surreal numbers that are simpler than x (i.e.,
that are predecessors of x) in the full binary surreal number tree 〈No, <s〉.
Although L and R are defined independently of the lexicographic (total)
ordering < that is defined on 〈No, <s〉, they are found to coincide with the
sets of all surreal numbers that are simpler than x and less than x and simpler
than x and greater than x, respectively, in the lexicographically ordered full
binary surreal number tree 〈No, <,<s〉. No’s ordinals (whose arithmetic in
No is different than the familiar Cantorian arithmetic) are identified with
the members of the “rightmost” branch of 〈No, <,<s〉, i.e., the unique
initial subtree of No that is a well-ordered proper class with respect to the
lexicographic order on No, No’s system of reals is identified with the unique
initial subtree of No that is a Dedekind complete ordered field, and the
remaining number systems that are the focus of the second part of the paper
likewise emerge as initial substructures of No—substructures of No that are
initial subtrees of No. Central to their emergence as initial substructures is
the fact that the sums and products of any two members of No are defined
as the simplest elements of No consistent with No’s intended structure as
an ordered group and an ordered field, respectively (see §4 below). It is
this simplicity hierarchical structure—or s-hierarchical structure, as we call
it [Ehrlich 2001; 1994]—together with No’s fullness as a binary tree that
underwrites the theorems that are central to the portrayal ofNo as a unifying,
s-hierarchical absolute arithmetic continuum presented below.
Figure 1 below offers a glimpse of the some of the early stages of the
recursive unfolding of this s-hierarchical continuum, where (as the notation
suggests) ù is the least infinite ordinal,−ù is the additive inverse of ù, 1/ù,
is the multiplicative inverse of ù, ù/2 is ù divided by 2, and so on. In §5,
we will present Conway’s characterization of the recursive unfolding in No
of the classical arithmetic continuum; for a complete characterization of
the recursive unfolding of the s-hierarchical absolute arithmetic continuum,
more generally, see the author’s [2011].
Throughout the paper the underlying set theory is assumed to be NBG,
and as such by classwemean set or proper class, the latter of which, in virtue
of the axioms of foundation and global choice, always has the “cardinality”
of the class On of all ordinals. For details on formalizing the theory of
surreal numbers in NBG, which is a conservative extension of ZFC, we refer
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Figure 1.

the reader to [Ehrlich 1989]. Readers seeking additional background in the
theory of surreal numbers more generally may consult the author’s [2001
and forthcoming 1] and the works of Conway [1976; 2001], Gonshor [1986]
and Alling [1987].

Part I. The absolute arithmetic continuum

§1. All numbers great and small. In addition to the reals and the ordinals,
the systemof surreal numbers embraces awide arrayof less familiar numbers,
including −ù, 1/ù, ù/2, eù, logù, sin(1/ù) and

3
√
ù + 1− ð

ù

to name only a few.3 Indeed, this particular real-closed field, which following
Conway we call No, is so remarkably inclusive that, subject to the proviso
that numbers—construed here asmembers of ordered fields—be individually

3Following Conway [2001, p. 228], we write eù for expù, where exp is the well-behaved
exponentiation for surreal numbers discovered by Martin Kruskal and developed (using
Kruskal’s “hints”) by Harry Gonshor [Gonshor 1986, Ch. 10]; by log we mean the inverse

of exp; and by sin(1/ù) we mean
∞∑

n=0

(−1)n · (1/ù)2n+1/(2n + 1)!, which is the familiar

generalization of the sin function for infinitesimals applied to 1/ù. For exponentials and
logarithms of surreal numbers, see [Gonshor 1986, Ch. 10] and [van den Dries and Ehrlich
2001]; for restricted trigonometric functions of surreal numbers, see [Alling 1987, 7.5], and
for restricted analytic functions of surreal numbers more generally, see §8 of the present paper
and [van den Dries and Ehrlich 2001].
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definable in terms of sets of NBG, it may be said to contain all numbers great
and small! In this respect, No bears much the same relation to ordered fields
that the systemR of real numbers bears to Archimedean ordered fields. This
can be made precise by saying that:

Theorem 1 (Ehrlich 1988; 1989; 1989a; 1992). Whereas R is (up to iso-
morphism) the unique homogeneous universal Archimedean ordered field,
No is (up to isomorphism) the unique homogeneous universal ordered field.4

Since there is a multitude of real-closed ordered fields, it is natural to
inquire if, like R, it is possible to distinguish No (to within isomorphism)
from the remaining real-closed ordered fields by appealing solely to its order.
As we shall now see, the following definition, where the notation “L < R”
indicates that every member of L precedes every member of R, enables one
to do just that.

Definition 1 (Ehrlich 1987). An ordered class 〈A,<〉 will be said to be
an absolute linear continuum if for all subsets L and R of A where L < R
there is a y ∈ A such that L < {y} < R.5

An absolute linear continuum 〈A,<〉 is both absolutely dense in the sense
that for each pair of nonempty subsets L and R of A where L < R, there
is a y ∈ A such that L < {y} < R, and absolutely extensive in the sense
that given any (possibly empty) subset L of A there are members a and
b of A that are respectively smaller than and greater than every member
of L. In fact, since in the definition of an absolute linear continuum L or
R may be empty, one can readily show that an ordered class is an absolute
linear continuum if and only if it has both of the just-stated properties.
Accordingly, since every element of an ordered class must either lie between
two of its nonempty subclasses or be greater than or less than every member
of some (possibly empty) subclass, these conditions collectively ensure that
absolute linear continua have no order-theoretic limitations that are definable
in terms of sets of standard set theory.
In his Contributions to the Founding of the Theory of Transfinite Numbers
[1895, §11], Cantor provided a non-metrical characterization of a closed
4For the purpose of this paper, an ordered field (Archimedean ordered field) A is said

to be homogeneous universal if it is universal—every ordered field (Archimedean ordered
field) whose universe is a class of NBG can be embedded in A—and it is homogeneous—
every isomorphism between subfields of A whose universes are sets can be extended to
an automorphism of A. Since model theorists frequently use the above italicized terms
in more general senses (cf. [Jónsson 1960] and [Morley and Vaught 1962]), in the model-
theoretic settings of the author’s [1989] and [1992] the terms absolutely homogeneous universal,
absolutely universal, and absolutely homogeneous are respectively employed in their steads.
5In [Ehrlich 1988; 1992; 1994] and a number of other works, we refer to absolute linear

continua as “çOn-orderings” since they extend to proper classes Hausdorff’s [1907; 1914] idea
of an ça -ordering, that is, an ordered set A such that for all subsets L and R of A where
L < R and |L|, |R| < ℵa there is a member of A lying strictly between those of L and those
of R.
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interval of the classical linear continuum and showed that a closed interval
of R is (up to isomorphism) the unique such structure. From the latter one
readily obtains the familiar categorical characterization of the ordered set
R itself. The following is the analog of the latter result for absolute linear
continua.

Theorem 2 (Ehrlich 1988). 〈No, <〉 is (up to isomorphism) the unique ab-
solute linear continuum.

Unlike the ordered field of reals, however, the ordered field of surreal
numbers is not distinguished (up to isomorphism) from other ordered fields
by its structure as an ordered class. Indeed, there are infinitelymany pairwise
non-isomorphic ordered fields that are absolute linear continua. Happily,
however, what one can prove is

Theorem 3 (Ehrlich 1988). No is (up to isomorphism) the unique real-
closed ordered field that is an absolute linear continuum.

An ordered field is real-closed if and only if it admits no extension to a
more inclusive ordered field that results from supplementing the field with
solutions to polynomial equations with coefficients in the field. Accord-
ingly, in virtue of Theorem 3, No is not only devoid of set-theoretically
defined order-theoretic limitations, it is devoid of algebraic limitations as
well; moreover, to within isomorphism, it is the unique ordered field that
is devoid of both types of limitations or ‘holes’, as they might more col-
loquially be called. That is, No not only exhibits all possible algebraic and
set-theoretically defined order-theoretic gradations consistent with its struc-
ture as an ordered field, it is to within isomorphism the unique such structure
that does. It is this together with Theorem 1 and a number of closely re-
lated results (see [Ehrlich 1992, forthcoming 1]) that naturally suggest that
No may be regarded as an absolute arithmetic continuum (modulo NBG).
However, as we alluded to above, to fully appreciate the nature of this
absolute continuum one must appeal to its algebraico-tree-theoretic struc-
ture. This is the subject of the remaining three sections of Part I of the
paper.

§2. No’s simplicity hierarchical structure. In addition to its inclusive struc-
ture as an ordered field,No has a rich algebraico-tree-theoretic structure that
emerges from the recursive clauses in terms of which it is defined. This s-
hierarchical structure, as was mentioned above, depends uponNo’s structure
as a lexicographically ordered full binary tree and arises from the fact that
the sums and products of any two members of the tree are the simplest pos-
sible elements of the tree consistent with No’s structure as an ordered group
and an ordered field, respectively, it being understood that x is simpler than
y just in case x is a predecessor of y in the tree.
Among the striking s-hierarchical features of No is that much as the
surreal numbers emerge from the empty set of surreal numbers by means of
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a transfinite recursion that provides an unfolding of the entire spectrum
of numbers great and small (modulo the aforementioned provisos), the
recursive process of defining No’s arithmetic in turn provides an unfolding
of the entire spectrum of ordered fields in such a way that an isomorphic
copy of every such system either emerges as an initial subtree of No or is
contained in a theoretically distinguished instance of such a system that does.
In particular:

Theorem 4 (Ehrlich 2001). Every real-closed ordered field is isomorphic to
a recursively defined initial subfield of No.

Closely related to this is

Theorem 5 (Ehrlich 2001). Every divisible ordered abelian group is isomor-
phic to a recursively defined initial subgroup of No.

The proof of Theorem 5 in [Ehrlich 2001] makes use of the following
closely related s-hierarchical result in conjunction with the fact that the
trivial divisible ordered abelian group {0} is an initial subgroup of No.
Theorem 6 (Ehrlich 2001). If A is a divisible initial subgroup of No, and a
is the simplest element of No that fills a cut in A, then the divisible subgroup
of No generated by A ∪ {a} is itself an initial subgroup of No.
An analogous proof of Theorem 4 could have been given in [Ehrlich 2001]
using the following analog of Theorem 6 for real-closed ordered fields in
conjunction with the fact that No’s subfield of real algebraic numbers is a
real-closed initial subfield of No.

Theorem 7. IfA is a real-closed initial subfield of No, and a is the simplest
element of No that fills a cut inA, then the real-closed subfield of No generated
by A ∪ {a} is an initial subfield of No.
The proof of Theorem 4 employed in [Ehrlich 2001], however, is quite
different, being based on Theorem 5, results of Mourgues and Ressayre
(and Delon) [1991; 1993] and a theorem [2001: Theorem 18] that provides
necessary and sufficient conditions for an ordered field to be isomorphic to
an initial subfield of No. However, since it will be convenient in §8 to have
Theorem 7 at hand and since Theorem 7 brings the embedding theory for
No into greater harmony with the classical embedding theory for real-closed
ordered fields, a proof of the theorem will be provided in the Appendix to
the paper.6

Another striking s-hierarchical feature of No is the following generaliza-
tion of the Cantor normal form theorem.

6Following the presentation of this paper at the International Congress on Nonstandard
Methods and Applications inMathematics in Pisa in 2006, Antongiulio Fornasiero informed
the author that Theorem 7 follows from results he established in his unpublished Ph.D. thesis
[2004], results he has since stated without proof in [2006, p. 140: Lemmas 7.5 and 7.6].
However, since we believe our proof is of independent interest, we include it here.
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Theorem 8 (Conway 1976; Ehrlich 2001, §3.1). Every surreal number can
be assigned a canonical “proper name” (or normal form) that is a reflection of
its characteristic s-hierarchical properties. These Conway names, as we call
them, are expressed as formal sums of the form

∑
α<â

ùyα · rα where â is an

ordinal, (yα)α<â is a strictly decreasing sequence of surreals, and (rα)α<â is a
sequence of nonzero real numbers. Every such expression is in fact the Conway
name of some surreal number, the Conway name of an ordinal being just its
Cantor normal form.

Since Conway names of surreal numbers are reflections of their character-
istic s-hierarchical features, one can appeal to the algebraico-tree-theoretic
structure of No to obtain revealing answers to the following two questions
that are motivated by No’s structure as a full binary tree (see [Ehrlich 2011]
for details):

(i) Given the Conway name of a surreal number, what are the Conway
names of its two immediate successors?

(ii) Given the Conway names of the members of a chain of surreal numbers
of limit length, what is the Conway name of the immediate successor
of the chain?

Moreover, since every real-closed ordered field is isomorphic to an initial
subfield ofNo, the answers provided to (i) and (ii) above not only shed light
on the recursive unfolding of No, but on the recursive unfolding in No of
real-closed ordered fields more generally, as the depiction of the early stages
of the recursive unfolding of the surreal number tree in Figure 1 above only
begins to show.
As we shall see in the second part of the paper, the just-mentioned s-
hierarchical features ofNo play significant roles in the unification of systems
of numbers great and small referred to above. Before turning to thesematters,
however, we will first introduce the surreal number tree in a manner that
underscores the author’s contention that the theory of surreal numbers may
be naturally regarded as a vast generalization of portions of Cantor’s theory
of the infinite, and then characterize No as an ordered field together with its
s-hierarchical structure.

§3. The surreal number tree. In Conway’s construction of surreal num-
bers, a surreal number is an equivalence class consisting of an entire proper
class of equivalent representations, which makes it impossible to collect the
surreal numbers thus construed into a legal class of NBG. If one wishes,
one can carry out Conway’s construction in the equiconsistent set theory of
Ackermann (cf. [Ehrlich 1994, p. 246]),7 but in NBG the surreals must be

7Ackermann’s set theory is a conservative extension of ZF having classes as well as sets
(cf. [Fraenkel, Bar-Hillel and Lévy l973, pp. 148–153; Lévy 1976, pp. 207–212]). Following
Fraenkel, Bar-Hillel and Lévy, here we include the axiom of foundation (for sets) among the
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“cut down to size”. This can be done most easily by identifying each number
with a canonical representative of each of Conway’s equivalence classes, or
by identifying each number with a canonical subset of each class. For the
purpose of formalization, Conway proposes the latter approach, making use
of the set-theoretic rank function [1976, p. 65], but even Conway admits that
any such attempt to formalize his construction in NBG “destroys a lot of its
symmetry” [1976, p. 65].8 By contrast, we have introduced two alternative
constructions that employ canonical representatives from Conway’s con-
struction: one is based on cuts due to Cuesta Dutari [1954; 1958–1959] that
generalize the familiar cuts of Dedekind [Ehrlich 1988; Alling and Ehrlich
1986 and 1987], and the other is a generalization of the vonNeumann ordinal
construction [Ehrlich 1994; 2002a]. In the present discussion, we introduce
the surreals via the latter approach using a recursive construction reminiscent
of Conway’s. Besides being simpler than Conway’s construction, this con-
struction places the surreal number tree at the center of the theory of surreal
numbers, where the s-hierarchical structure of No suggests it belongs.9

3.1. Construction. VonNeumann defines an ordinal as a transitive set that
is well ordered by the membership relation. As a result, for von Neumann,
an ordinal emerges as the set of all of its predecessors in the ‘long’ though
rather trivial binary tree 〈On, ǫ〉 of ordinals ordered by membership.10 So,

axioms of Ackermann’s set theory. Since Ackermann [1956] did not do so, some authors
distinguish betweenA and A∗, where byA they mean Ackermann’s original axioms (or some
equivalent set thereof) and by A∗ they mean what we have called Ackermann’s set theory (cf.
[Lévy and Vaught 1961; Reinhardt 1970]). In A∗, unlike in NBG, besides the class V of all
sets, there exists the power class P(V ) of all subclasses of V , the power class P(P(V )) of all
subclasses of P(V ) and so on [Lévy and Vaught 1961, p. 1061; also see Fraenkel, Bar-Hillel
and Lévy l973, p. 153 and Lévy l976, p. 212].
8As Conway mentions [1976, p. 65], the difficulties of formalizing his approach in NBG

can be sidestepped by employing sign-expansions of surreal numbers (see [Conway 1976,
pp. 29–30; Ehrlich 2011, pp. 5–6]) as the surreal numbers themselves (cf. [Gonshor 1986]
and [Ehrlich 2001]). However, in addition to severing the theory of surreal numbers from
Conway’s theory of games, the sign-expansion approach presupposes the availability of the
ordinals, the latter of which strikes this author as an aesthetic blemish on a theory of all
numbers great and small.
9By contrast, three chapters after introducing the surreal numbers Conway shows that

the inductively defined ordered class of surreal numbers can be given the structure of lex-
icographically ordered full binary tree, but this structure plays a limited role in Conway’s
treatment. What does play a role in Conway’s treatment is a birthday function that maps each
surreal number to the level of recursion at which it is created as well as the weaker notion
of simplicity: x is simpler than y, if x was born prior to y. A surreal number’s birthday
corresponds to the tree-rank of the surreal number in our development.
In private conversations with the author, Conway expressed regret for having placed the

emphasis on a simpler than relation defined in terms of the birthday map as opposed to the
predecessor relation in the tree. For additional comments on this matter, see [Ehrlich 1994,
p. 257: Note 1] and [Ehrlich 2001, p. 1232: Note 2].
10The structure 〈On, ǫ〉 is not often described as a binary tree since its structure as a tree is

indistinguishable from its familiar structure as a well-ordered class. In the theory of surreal
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for example, 0 is identified with ∅, 1 is identified with {∅} = {0}, 2 is
identified with {∅, {∅}} = {0, 1} and so on. As we mentioned above,
in our construction of surreal numbers, which generalizes von Neumann’s
construction, each surreal number x emerges as a characteristic ordered pair
(L,R) of sets of surreal numbers whose union is the set of all surreal numbers
that are simpler than x (i.e., that are predecessors of x) in the full binary
surreal number tree 〈No, <s〉.
The recursive approach we employ requires one to have an appropriate
ordered pair (L,R) at hand before it can be identified as a surreal number.
To ensure the availability of the requisite class of set-theoretical entities, we
follow Conway in first introducing the class of games.

Construction of Games

If L and R are any two sets of games, then there is a game (L,R). All
games are constructed in this way.

BeginningwithL = ∅ andR = ∅, where∅ is the empty set (of games), the
above construction leads to an entire proper class of games, (∅,∅) being the
first game constructed. The closure condition “All games are constructed in
this way” simply ensures that everything that is a game arises in the specified
way from sets of previously constructed games.

Notational Convention

If x = (L,R) is a game, then following Conway, L is said to be the set of
left options of x andR is said to be the set of right options of x. We will write
Lx for the set of left options of x, Rx for the set of right options of x, and
(Lx , Rx) for x itself.

To recursively extract the surreal numbers from the class of games wemake
use of the following terminology from [Ehrlich 2002a].

Definitions

A game x is said to be simpler than a game y = (Ly , Ry), written x <s y,
if x ∈ Ly or x ∈ Ry ; a chain of games (i.e., a class of games totally ordered
by <s) is said to be ancestral if it is closed under the simpler than relation,
i.e., x is a member of the chain if y is a member of the chain and x <s y;
and a partition L,R of an ancestral chain of games is said to be orderly, if
Lx ⊆ L and Rx ⊆ R for each element x = (Lx , Rx) of the chain.

numbers, however, one must distinguish between its binary tree structure, on the one hand,
and its structure as a totally ordered class, on the other hand. See, however, Corollary 1.
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The members of the class No of surreal numbers are now identified by
means of the following simple construction in which the clause “there is a
surreal number (L,R)” signifies that the game (L,R) is a surreal number.

Construction of Surreal Numbers

If L,R is an orderly partition of an ancestral chain of surreal numbers,
then there is a surreal number (L,R). All surreal numbers are constructed
in this way.

In accordance with this construction, (∅,∅) is the simplest surreal num-
ber, since even before any game has been identified as a surreal number
there is an orderly partition L = ∅, R = ∅ of the empty ancestral chain ∅
of surreal numbers. Moreover, once the surreal number (∅,∅) has been
constructed, the orderly partitions ∅, {(∅,∅)} and {(∅,∅)},∅ of the an-
cestral chain of surreal numbers consisting solely of (∅,∅) give rise to the
surreal numbers (∅, {(∅,∅)}) and ({(∅,∅)},∅), respectively, and so on
(see Theorem 9 below for details).
If one wishes, one could develop the theory of surreal numbers making
use of the von Neumann ordinals, which are already at hand. On the other
hand, if one wants to develop the theory of ordinals within the theory of
surreal numbers, as seems befitting a theory of all numbers great and small,
one must first identify “our” ordinals.

Isolation of the Ordinals

A surreal number (L,R) will be said to be an ordinal if R = ∅. By On
we mean the class of ordinals so defined. For all ordinals x = (Lx ,∅) and
y = (Ly ,∅), x will be said to be less than y, written x <On y, if Lx ⊂ Ly .
In accordancewith the above definition, (∅,∅) is anordinal, ({(∅,∅)},∅)
is an ordinal, ({(∅,∅), ({(∅,∅)},∅)},∅) is an ordinal, and so on. Indeed,
in our approach, the just-cited ordinals are ultimately identified with the
finite ordinals 0 = (∅,∅), 1 = ({0},∅) and 2 = ({0, 1},∅), respectively.
That the ordered class 〈On, <On〉 of ordinals so defined has all of the
requisite properties possessed by any of the more familiar constructs so-
called follows from

Proposition 1. There is a one-to-one order preserving correspondence be-
tween the ordered class 〈On, <On〉 and the ordered class of von Neumann
ordinals.

As the reader will recall, a tree 〈A,<A〉 is a partially ordered class such
that for each x ∈ A, the class {y ∈ A : y <A x} of predecessors of x, written
prA(x), is a set well ordered by <A. The tree-rank of x ∈ A, written ñA(x),
is the ordinal corresponding to the well-ordered set 〈prA(x), <A〉; the αth
level of A is 〈x ∈ A : ñA(x) = α〉; and a root of A is a member of the zeroth
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level. If x, y ∈ A, then y is said to be an immediate successor of x if x <A y
and ñA(y) = ñA(x) + 1; and if (xα)α<â is a chain in A (of length â), then
y is said to be an immediate successor of the chain if xα <A y for all α < â
and ñA(y) is the least ordinal greater than the tree-ranks of the members of
the chain. A tree 〈A,<A〉 is said to be binary if each member of A has at
most two immediate successors and every chain in A of limit length has at
most one immediate successor. If every member of A has two immediate
successors and every chain in A of limit length (including the empty chain)
has an immediate successor, then the binary tree 〈A,<A〉 is said to be full.
Theorem 9. 〈No, <s〉 is a full binary tree. In particular, (∅,∅) is the root
of the tree; if x = (Lx , Rx) is a surreal number, then (Lx , {x} ∪ Rx) and
(Lx ∪ {x}, Rx) are the immediate successors of x; and if (xα)α<â is a chain
of surreal numbers of infinite limit length, then (

⋃
α<â Lxα ,

⋃
α<â Rxα ) is the

immediate successor of the chain.

There are three mutually exclusive and collectively exhaustive relations
that distinct surreal numbers x and y may bear to one another with respect
to simplicity: either x <s y, y <s x, or x is incomparable with y (i.e., x ≮s y
and y ≮s x). The components of the following definition specify when
x < y for these respective cases.

The Rule of Order

For all surreal numbers x = (Lx , Rx) and y = (Ly , Ry), x < y if and
only if x ∈ Ly or y ∈ Rx or Rx ∩ Ly 6= ∅.

It is not difficult to show that 〈No, <〉 is totally ordered by the Rule of
Order [Ehrlich 1994, p. 246: Theorem 2.1]. Moreover, it is evident that,
if x = (Lx , Rx) is a surreal number, then (Lx , {x} ∪ Rx) is the immediate
successor of x less than x and (Lx ∪ {x}, Rx) is the immediate successor
of x greater than x; and if (xα)α<â is a chain of surreal numbers of infinite
limit length, then (

⋃
α<â Lxα ,

⋃
α<â Rxα ), which is the immediate successor

of the chain, is always greater than the members of
⋃
α<â Lxα and less than

the members of
⋃
α<â Rxα . Using this in conjunction with definition of the

simpler than relation, one may obtain the aforementioned generalization of
the idea underlying von Neumann’s ordinal construction.

Theorem 10. For each surreal number x,

x =
(
Ls(x), Rs(x)

)

where

Ls(x) = {a ∈ No : a <s x & a < x}

and

Rs(x) = {a ∈ No : a <s x & x < a}.
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Amaximal subclass of a tree 〈A,<A〉well ordered by<A is called a branch.
By appealing to Theorem 10 together with the definition of No’s ordinals
and the corresponding ordering thereof, we also have

Corollary 1. No’s ordinals are the members of the rightmost branch of
〈No, <,<s〉, i.e., the unique initial subtree of No that is a proper class well
ordered by <. Each ordinal α is the member of the branch of tree-rank α. In
particular

α =
(
Ls(α),∅

)
.

Moreover, for all ordinals α and â , α <On â if and only if α <s â if and only
if α < â .

An initial subtree of a tree 〈A,<A〉 is a subclass A′ of A with the induced
order such that for each x ∈ A′, prA′(x) = prA(x). Using the axiom of
global choice (or simply the axiom of choice, if A is a set) a tree may be
shown to be binary if and only if it is isomorphic to an initial subtree of the
canonical full binary tree 〈B,<B〉, where B is the class of all sequences of 0s
and 1s indexed over some ordinal and x <B y signifies that x is a proper
initial subsequence of y [5, p. 216].11 Moreover, as is well known, 〈B,<B〉 (as
well as every initial subtree thereof) canbe totally ordered (lexicographically)
in accordance with the definition:

(xα)α<ì <lex(B) (yα)α<ó if and only if xâ = yâ for all â < some ä,

but xä < yä, it being understood that 0 < undefined < 1.

The resulting structure 〈B,<lex(B), <â〉 is called the lexicographically ordered
canonical full binary tree.
In the theory of surreal numbers, however, it is more convenient work with
the following representation independent characterization of a lexicograph-
ically order binary tree.

Definition 2 (Ehrlich 2001). A binary tree 〈A,<A〉 together with a total
ordering < defined on A is said to be lexicographically ordered if for all
x, y ∈ A, x is incomparable with y if and only if x and y have a common
predecessor lying between them (i.e., there is a z ∈ A such that z <A x,
z <A y and either x < z < y or y < z < x).

The appellation “lexicographically ordered” is motivated by the fact that
there is a unique order preserving isomorphism between a binary tree that is
ordered in this sense and an initial subtree of 〈B,<lex(B), <B〉 [Ehrlich 2001:
Theorem 1, p. 1234]. As one would expect from the following result, in the
case of 〈No, <,<s〉 the isomorphism is onto.
Theorem 11. 〈No, <,<s〉 is a lexicographically ordered full binary tree.
11In writings on surreal numbers, it is commonplace to employ sequences of − signs and

+ signs rather than 0s and 1s to represent canonical binary trees.
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Proof. Since 〈No, <,<s〉 is an ordered full binary tree, it remains to show
〈No, <,<s〉 is lexicographically ordered. Letx, y ∈ No. In virtue of the Rule
of Order and Theorem 10: x < y if and only if x ∈ LS(y) or y ∈ RS(x)or
RS(x)∩LS(y) 6= ∅. But if x is incomparable with y, thenRS(x)∩LS(y) 6= ∅,
in which case x and y have a common predecessor lying between them, and
if x is comparable with y, then x ∈ LS(y) or y ∈ LS(x), in which case x
and y cannot have a common predecessor lying between them. Indeed, if
x ∈ LS(y), then ñNo(z) > ñNo(x) for any z ∈ LS(y) for which x < z, which
implies z /∈ RS(x); and if y ∈ RS(x), then ñNo(z) > ñNo(y) for any z ∈ RS(x)
for which z < y, which implies z /∈ LS(y). ⊣

§4. The s-hierarchical ordered field of surreal numbers. Central to the
algebraico-tree-theoretic development of the theory of surreal numbers is
the following consequence of No’s structure as a lexicographically ordered
full binary tree: if L and R are two subsets of No for which every member
of L precedes every member of R (L < R), there is a simplest member of
No lying between the members of L and the members of R [Ehrlich 2001,
pp. 1234–1235; 2011: Proposition 2.4]. Co-opting notation introduced by
Conway, the simplest member of No lying between the members of L and
the members of R is denoted by the expression

{L | R}.
It is not difficult to show that each surreal number x is the simplestmember
of No lying between its predecessors on the left and its predecessors on the
right, i.e.,

x =
{
Ls(x) | Rs(x)

}
.

Using this representation, the algebraico-tree-theoretic formulation of the
central theorem in the theory of surreal numbers may be stated as follows.

Theorem 12 (Conway 1976; Ehrlich 2001). 〈No,+, ·, <,<s〉 is an ordered
field when+,− and · are defined by recursion as follows where xL, xR, yL and
yR are understood to range over the members of Ls(x), Rs(x), Ls(y) and Rs(y),

respectively.12

Definition of x + y.

x + y = {xL + y, x + yL | xR + y, x + yR}.

Definition of −x.
−x = {−xR | −xL}.

12In the following definitions of +, − and ·, the set-theoretic brackets that enclose the sets
of “right-sided members” and the sets of “left-sided members” are omitted (in accordance
with custom).
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Definition of xy.

xy = {xLy + xyL − xLyL, xRy + xyR − xRyR

| xLy + xyR − xLyR, xRy + xyL − xRyL}.

Although the algebraico-tree-theoretic definitions of sums, products and
additive inverses of surreal numbers are apt to appear rather cryptic to
readers unfamiliar with the theory of surreal numbers, they have natural
interpretations. To begin with, in virtue of the nature of the representations
of x and y, we have

xL < x < xR and yL < y < yR

for all xL, xR, yL and yR. And this in conjunction with elementary algebra
of ordered fields implies that if No is to be an ordered field x + y must lie
between the sums on the left and right of x + y in the above definition of
x + y and that xy must lie between the arithmetical expressions on the left
and right of xy in the above definition of xy [Ehrlich, 1994a, pp. 252–253;
2001, p. 1236; Alling 1987, pp. 133–139]. Accordingly, since x + y and xy
must lie between the arithmetic expressions on the left and right in their
respective recursive definitions, these definitions respectively require that
x+ y and xy be the simplest member of the surreal number tree so situated.
The constraint on additive inverses, which is a consequence of the definition
of addition [Ehrlich 2001, p. 1237], ensures that the portion of the surreal
number tree less than 0 is (in absolute value) a mirror image of the portion
of the surreal number tree greater than 0, 0 being the simplest element of, as
well as the unique root in, the surreal number tree.
With the above algebraico-tree-theoretic version of Conway’s theorem in
mind, in [Ehrlich 2001, p. 1236] we defined an s-hierarchical ordered field as
an ordered field with a lexicographically ordered binary tree structure (in the
sense of Definition 2) whose sums and products satisfy the above conditions
on sums and products, with no supposition that the sums and products be
recursively defined as they are in No. The s-hierarchical subfields of an
s-hierarchical ordered fieldA coincide with the initial subfields ofA [Ehrlich
2001, p. 1236], and when, as in the case of No, the arithmetic is recursively
defined, the sums and products of the elements of A (and of elements of the
initial subfields of Amore generally) get defined just as soon as there is sufficient
previously defined ordered algebraico-tree theoretic information to do so.
Besides being (up to isomorphism) the uniqueDedekind complete ordered
field,R is (up to isomorphism) the unique universal and the unique maximal
(or non-extensible) Archimedean ordered field, the condition of maximality
or of non-extensibility being Hilbert’s [1900] classical continuity condition.
Analogs of these results also hold for R considered as an s-hierarchical
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ordered field. More importantly, however, s-hierarchical analogs of these
classical characterization theorems also hold for No.
IfA is an s-hierarchical ordered field, thenA is said to be universal if every
s-hierarchical ordered field is isomorphic to an initial subfield of A;13 A is
said to be maximal (or non-extensible) if there is no s-hierarchical ordered
field that properly contains A as an initial subfield; and A is be said to be
complete if {L | R} exists whenever L and R are subsets of A for which
L < R.

Theorem 13 (Ehrlich 2001). Let A be an s-hierarchical ordered field. A is
complete if and only if A is universal if and only if A is maximal if and only if
A is isomorphic to No.

Whereas Theorems 1 and 3 may be said to characterize No as an absolute
arithmetic continuum, Theorem 13 may be said to characterize No as an
s-hierarchical absolute arithmetic continuum. In the remainder of the paper
we will turn our attention to the unifying capacity of this remarkable s-
hierarchical structure.

Part II. The unification of systems of numbers great and small

Throughout the 17th and 18th centuries, talk of infinitesimal line seg-
ments and numbers to measure them was commonplace in discussions of
the calculus. However, as a result of the conceptual difficulties that arose
from these conceptions their role became more subdued in the 19th-century
calculus discussions and was eventually “banished” therefrom. However,
whereas most late 19th- and pre-Robinsonian 20th-century mathematicians
banished infinitesimals from the calculus, they were by no means banished
from mathematics.14 Indeed, between the early 1870s and the appearance of
Abraham Robinson’s work on nonstandard analysis in 1961 there emerged a
large, diverse, technically deep and philosophically pregnant body of consis-
tent (non-Archimedean) mathematics of the infinitely large and the infinitely
small. Unlike nonstandard analysis, which is primarily concerned with pro-
viding a treatment of the calculus making use of infinitesimals, the bulk of
the former work is either concerned with the rate of growth of real-valued
functions or with geometry and the concepts of number and of magnitude,
or grew out of the natural evolution of such discussions.

13The definition of universal introduced above is equivalent to, thought not identical with,
the definition of universal employed in [Ehrlich 2001]. The equivalence of the two notions is
evident in virtue of Definition 8 and Lemma 2 of [Ehrlich 2001].
14Nevertheless, there is a widespread misconception in the literature that infinitesimals

were indeed banished from late 19th- and pre-Robinsonian 20th-century mathematics. For
in-depth discussions of the roots of this misconception, see the author’s [2006] and [forth-
coming 2].
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Following a brief discussion of No’s containment of the reals, we will turn
our attention to some of the relations that exists between No and the non-
Archimedean ordered fields that have emerged from the three just-mentioned
bodies of work.

§5. The containment of the reals. Although No contains an entire proper
class of isomorphic copies of the ordered field of real numbers, only one of
them is an initial subfield of No. In writings on the surreal numbers, the
latter subfield is identified as No’s subfield of real numbers, the set of whose
members, in accordance with our construction, may be defined as follows.

Definition 3. Let D be the set of all surreal numbers having finite
tree-rank and further let

R = D ∪ {(L,R) ∈ No : L and R are infinite subsets of D}.
Except for inessential changes, the following result regarding the structure
of R is due to Conway [1976, pp. 23–25].

Proposition 2. R (with +, −, · and < defined à la No) is isomorphic to the
ordered field of real numbers defined in any of the more familiar ways, D being
No’s ring of dyadic rationals (i.e., rationals of the form m/2n where m and n
are integers); moreover, n = {0, . . . , n−1 | ∅} and−n = {∅ | −(n−1), . . . 0}
for each positive integer n, 0 = {∅ | ∅}, and the remainder of the dyadics are
the arithmetic means of their left and right predecessors of greatest tree-rank.

It is not difficult to see that

R− D = {{L | R} ∈ No : (L,R) is a Dedekind gap in D}
and, hence, that the members of R−D have tree-rank ù. Accordingly, since
every ordered field contains a copy of the ring of dyadic rationals and every
Archimedean ordered field is a subfield of R, in virtue of the above we have

Proposition 3 (Ehrlich 2001). Every Archimedean ordered field is isomor-
phic to exactly one initial subfield of No, the latter being an initial subfield
of R.

§6. Non-Archimedean ordered number fields inspired by non-Archimedean

geometry. Following Wallis’s and Newton’s incorporation of directed seg-
ments into Cartesian geometry, it became loosely understood that given a
unit segment AB of a line L of a classical Euclidean space, the collection
of directed segments of L emanating from A including the degenerate seg-
ment AA itself constitutes an Archimedean ordered field with AA and AB
the additive and multiplicative identities of the field and addition and mul-
tiplication of segments suitably defined. These ideas were made precise by
Giuseppe Veronese [1891; 1894] and David Hilbert [1899] in their works
on the foundations of geometry, from which the modern conceptions of
Archimedean and non-Archimedean ordered fields emerged.
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Unlike the analytic constructions of Hilbert, Veronese’s constructions of
non-Archimedean ordered fields were synthetic, though he did represent the
line segments that emerged from his constructions using a loosely defined,
complicated system of numbers consisting of finite and transfinite series of
the form

∞y11 r1 +∞y21 r2 +∞y31 r3 + · · ·
where r1, r2, r3, . . . are real numbers, and∞y11 ,∞

y2
1 ,∞

y3
1 , . . . is a sequence of

units, each of which is infinitesimal relative to the preceding units,∞1 being
the number (of “infinite order 1” [1891, p. 101]) introduced by Veronese to
represent the infinitely large line segment whose existence is postulated by
his “hypothesis on the existence of bounded infinitely large segments” [1891,
p. 84]. Veronese’s number system was provided an analytic foundation by
Tullio Levi-Civita [1892–1893/1954, 1898/1954], who therewith provided
the first analytic constructions of non-Archimedean ordered fields. Among
the array of non-Archimedean ordered fields that emerged fromLevi-Civita’s
work are isomorphic copies of the ordered fields of Laurent power series with
coefficients in subfields of the reals and exponents in ordered abelian groups,
ordered fields that continue to play prominent roles in the foundations of
geometry.
Building on the work of Levi-Civita, Hans Hahn [1907] constructed non-
Archimedean ordered number fields having properties that generalize the fa-
miliar continuity properties of Dedekind [Ehrlich 1997] and Hilbert [Ehrlich
1995; 1997a], and he demonstrated (vis-à-vis his embedding theorem for
ordered abelian groups)15 that his number systems provide a panorama
of the finite, infinite and infinitesimal numbers that can enter into a non-
Archimedean theory of continua based on the concept of an ordered field
[Ehrlich 1995, 1997, 1997a]. This idea was later brought into sharper focus
when it was demonstrated that every ordered field could be embedded in a
suitable Hahn field.16

15For concise, modern proofs of Hahn’s embedding theorem, see, for example, [Hausdorff
1914, pp. 194–207], [Clifford 1954] and [Fuchs 1963, pp. 56–61]. Like Hausdorff’s [1909],
which is discussed in §8, Hausdorff’s elegant proof of Hahn’s embedding theorem has been
largely overlooked in the literature. For additional references and historical perspective, see
[Ehrlich 1995].
16As we explained in [Ehrlich 1995, p. 187], this theorem has a long and complicated

history that makes it difficult to attribute it to any single author. However, by the early
1950s, as a result of the work of Kaplansky [1942], it appears to have assumed the status of
a “folk theorem” among knowledgeable field theorists. Still, it appears to be Paul Conrad
who published the first explicit statement of the result [1954, p. 328], and Conrad (together
with Dauns) [1969; Theorem II] later isolated, and provided a detailed proof-sketch of, a
revealing formulation of the theorem. Since that time many alternative proofs, variations,
and strengthenings have appeared including those of Priess-Crampe [1973; 1983, pp. 62–64,
124], Priess-Crampe and von Chossey [1975], Rayner [1975], Mourgues and Ressayre [1993],
van den Dries [1991] and Dales and Wooden [1996].
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Hahn’s celebrated theorem on ordered fields is given by

Hahn 1 [1907]. Let R be the ordered field of real numbers and Γ be a
nontrivial ordered abelian group.

(i) The collection, R((tΓ)), of all series
∑

α<â

tãα · rα

where {ãα : α < â ∈ On} is a (possibly empty) strictly increasing se-
quence of members of Γ and {rα : α < â} is a sequence of members of
R − {0} is a non-Archimedean ordered field when the order is defined
lexicographically and sums and products are defined termwise, it being
understand that tã · tκ = tã+κ .17

Moreover:

(ii) The structure, R((tΓ))ë, that results by limiting the construction of
R((tΓ)) to those series where â is less than a given uncountable initial
number ë (i.e., an uncountable infinite cardinal ë) is likewise a non-
Archimedean ordered field.

With Hahn 1 Hahn provided an implicit prescription for creating all
numbers great and small (modulo NBG). On the other hand, it was only
withNo (considered as an s-hierarchical ordered field) that the full potential
for the generation and systemization of these numbers was realized. To state
the central s-hierarchical relation between Hahn’s classical systems and No
the following terminology is required.
Henceforth, byR((tΓ))On wemean the ordered field (with order, addition,
and multiplication defined à la Hahn), consisting of all series of the form

∑

α<â

tãα · rα

where {ãα : α < â ∈ On} is a (possibly empty) strictly increasing sequence
of elements of an ordered abelian group Γ and rα ∈ R−{0} for each α < â
where R is the ordered field of reals. If Γ is a set, then R((tΓ))On is just the
Hahn fieldR((tΓ)), and otherwiseR((tΓ))On is an ordered field of powerOn.
An element x of R((tΓ))On is said to be a truncation (proper truncation) of

Kaplansky’s above-cited paper on maximally valued fields draws heavily on the valuation-
theoretic classics of Krull [1932] and Ostrowski [1935]. No attempt to provide the historical
background for the non-Archimedean mathematics that permeates the theory of surreal
numbers would be complete if it fails to take into account these three papers and the theory
of valuations more generally. We intend to do this on another occasion. For the time being,
we direct the reader to [Alling 1987], where a valuation-theoretic analysis of the theory of
surreal numbers is provided.
17Hahn [1907] follows Veronese in using strictly decreasing sequences of members of Γ.

Thus, whereas t is infinite for Hahn, t is infinitesimal for us. In both approaches, the latter
of which is more commonly used in the literature today, the successive terms in the sequence
tã0 , tã1 , tã2 , . . . are infinitesimal relative to the preceding terms.
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∑
α<â

tãα · rα ∈ R((tΓ))On if x =
∑
α<ó
tãα · rα for some ó ≤ â (ó < â); if every

truncation of a member of a subclass of R((tΓ))On is itself a member of the
subclass, the subclass is said to be truncation closed. Roughly speaking, a
truncation of x is an approximation of x, increasingly longer truncations
being better approximations. Finally, a subfield F of R((tΓ))On is said to be
cross sectional if {tã : ã ∈ Γ} ⊂ F . Roughly speaking, each tã serves as the
unit of measure of the ãth Archimedean class of R((tΓ))On. Thus, roughly
speaking, a subfield F of R((tΓ))On is cross sectional if it contains all the
canonical units contained in R((tΓ))On.
In addition to stating the relation between Hahn fields andNo, the follow-
ing result provides necessary and sufficient conditions for an ordered field to
be isomorphic to an initial subfield of No.

Theorem 14 (Ehrlich 2001). Let Γ be an ordered abelian group that is an
initial subgroup of No.

(i) There is an isomorphism of ordered fields from R((tΓ))On onto an initial
subfield of No that sends

∑

α<â

tãα · rα

to the surreal number having Conway name
∑

α<â

ù−ãα · rα .

(ii) For the special case where Γ = No, the just-said isomorphism maps
R((tNo))On onto No.

(iii) The result expressed in (i) holds, more generally, for any truncation closed,
cross sectional subfield of R((tΓ))On; moreover, every initial subfield A of
No is the image of precisely one such isomorphism (where Γ is an initial
subgroup of No that depends on A).

In subsequent portions of the paper we will to appeal to a number of
distinguished initial subfields of No. We will draw this section of the paper
to a close with a decomposition theorem forNo that collects them and a host
of other closely related initial subfields together in a revealing manner. To
formulate the result we require a construct that emerges from the first part
of the following simple consequence of Theorem 14.

Corollary 2. (i) Let Γ be an initial subgroup of No and ë be an un-
countable initial number ≤ On. There is a unique initial subfield of No
containing {ùã : ã ∈ Γ} that is isomorphic to R((tΓ))ë. Henceforth,
these initial subfields, which are obtained by replacing each formal sum∑
α<â

tãα · rα with the corresponding Conway name
∑
α<â

ù−ãα · rα , will be

denoted R((ôΓ))ë, where ô = ù
−1.
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(ii) If A is an initial subfield of No and Γ is the initial subgroup of No
consisting of {ã : ùã ∈ A}, then A is a truncation closed, cross sectional
subfield of R((ôΓ))On. If Γ is a set, then R((ôΓ))On is isomorphic to
R((tΓ)) and will be called the Hahn field in No induced by A.

Theorem 15 (van den Dries and Ehrlich 2001). Let No(ë) be the class of
members of No of tree-rank < ë ≤ On. Then No(ë) is an ordered field
(indeed, a real-closed ordered field ) if and only if ë is an ε-number (i.e.,
ë = ùë). Furthermore, if ë is an ε-number, then No(ë) = R((ôNo(ë)))ë just in
case ë is a regular initial number.18

§7. Ordinals and omnific integers in initial subfields of No. In their writings
on the foundations of geometry, Veronese and Levi-Civita proclaimed that
their infinite numbers are founded on hypotheses other than those employed
by Cantor. With this in mind, Veronese observed in his letter to Cantor,
dated November 13, 1890

[i]n . . . [my number system] . . . there is not a first infinite number
. . . . This is the essential difference between your number ù and
my number∞1. [Meschkowski and Nilson 1991, p. 329]

Such proclamations, however, did not persuade Cantor of the cogency of
non-Archimedean number systems, and in his letter toWilhelmKilling dated
April 5, 1895 Cantor expressed the matter thus:

Of his infinitely large numbers . . . [Veronese] . . . says that they are
introduced on other hypotheses than mine. But mine depend upon
absolutely no hypotheses, but are immediately derived from the
natural concept of set. They are just as necessary and free from
arbitrariness as the finite whole numbers. [Dauben 1979, p. 351:
Note 79]

While Cantor rejected the legitimacy of non-Archimedean numbers sys-
tems, he certainly shared Veronese’s and Levi-Civita’s beliefs that there is
no place for infinite ordinals in their number systems or in number systems,
more generally, having additive and/or multiplicative structures that are
commutative. After all, according to Cantor,

the laws governing them [i.e., the Cantorian laws governing ordi-
nals] can be derived from immediate inner intuition with apodictic
certainty [Cantor 1883 in 1932, p. 170; Cantor 1883 inEwald 1996,
p. 886].

The view that Cantor’s operations on ordinals are the only legitimate
such operations was first challenged by Hessenberg [1906, pp. 591–594] with
his introduction of the natural sums of ordinals (written in Cantor normal

18Prominent among the regular initial numbers that are ε-numbers are the successor
cardinals and the (strongly) inaccessible cardinals > ù. On is the only inaccessible cardinal
> ù whose existence can be proved in NBG.
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form), and this was followed two decades later by Hausdorff’s [1927, pp. 68–
69; 1957, pp. 80–81] introduction of the corresponding natural products of
ordinals, which he generously attributed to Hessenberg. Carruth [1942] later
showed that the natural sums and products of Hessenberg and Hausdorff
are in fact distinguished special cases of a wide class of sums and products
of ordinals that likewise could be called “natural”, but the terminology of
Hessenberg and Hausdorff has stuck. However, it appears to have been
the Italian geometer Federigo Enriques, in his Sui numeri non archimedei e
su alcune loro interpretazioni (On non-Archimedean Numbers and Some of
their Interpretations) [1911, pp. 90–96; also see 1912, pp. 472–478; 1924,
pp. 367–372] who first explicitly noted that a non-Archimedean ordered
field can be a natural vehicle for embedding a commutative semiring of finite
and infinite ordinals. Indeed, without mention of Cantor normal forms
or natural sums and products of ordinals, Enriques essentially showed that
R((ôZ)), considered as an ordered field of formal power series (without
its surreal connotations), is an extension of the lexicographically ordered
semiring of ordinals α < ùù (written in Cantor normal form) with sums
and products defined naturally. This all but forgotten work appeared al-
most four decades before Roman Sikorski’s seminal paper On an Ordered
Algebraic Field [1948], the work to which contemporary order-algebrists
usually trace the insight that lexicographically ordered semirings of ordi-
nals with sums and products defined naturally can be embedded in ordered
fields.
However, with the exception of special cases, such as those identified by
Enriques and Sikorski (also see [Klaua 1994] and [Ehrlich 2001, p. 1256]),
there are rarely natural embeddings of semirings of ordinals into ordered
fields that distinguish themselves from the plethora of possible embeddings.
In the case of initial subfields of No, however, this is not the case, as the
following amplification of our earlier remarks on the containment of ordinals
in No makes clear.19

Let On(A) be the class of ordinals in an initial subfield A of No. Then
A will be said to be α-Archimedean if and only if α is the height of On(A)
(considered as an initial subtree of A).
As is evident from the following result, the idea of an α-Archimedean,
initial subfield ofNo is a natural s-hierarchical adaptation and generalization
of the idea of an Archimedean subfield of No.

Proposition 4 (Ehrlich 2001). If A is an initial subfield of No, then A is
α-Archimedean if and only if for all a, b ∈ A where a > b > 0 there is an
ç < α such that çb > a; furthermore, A is Archimedean if and only if A is
ù-Archimedean.

19For a more general discussion in terms of s-hierarchical ordered groups and fields, see
[Ehrlich 2001, §5].
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An ordinalα is said to be additively indecomposable if â+c ã < α whenever
â, ã < α (where +c is the Cantorian sum). Moreover, if 0 < α ≤ On, then α
is additively indecomposable if and only ifα = ùϕ for some ordinalϕ ≤ On.
The following is a generalization for initial subfields ofNo of a compilation
of results established by Conway for No.

Theorem 16 (Ehrlich 2001). Let A be an initial subfield of No. Then A
is ùϕ-Archimedean for some nonzero indecomposable ordinal ϕ ≤ On. If A
is ùϕ-Archimedean, then A contains a canonical cofinal, ordered subsemiring
On(A) of ordinals consisting of all surreal numbers x < ùϕ such that x =∑
α<n
ùϕα · aα for some finite descending sequence (ϕα)α<n of ordinals < ϕ and

some sequence (aα)α<n of finite ordinals > 0; On(A) in turn is contained in
a discrete, canonical subring Oz(A) of A—the omnific integer part of A—
consisting of all members of A of the form

∑
α<â

ùϕα · aα where ϕα ≥ 0 for

all α < â and aα is an integer whenever ϕα = 0; for each x ∈ A there is a
z ∈ Oz(A) such that z ≤ x ≤ z + 1.
As an addendum to Theorem 16 we note that, if A is an initial subfield
of No, then the ring Z of integers is an initial subring of Oz(A), which in
turn is an initial subring of A [Ehrlich 2011, Note 2, pp. 3–4]; moreover,
Z = Oz(A) if and only if A is Archimedean.

§8. Paul du Bois-Reymond’s Infinitärcalcül and its aftermath. Although
interest in the rates of growth of real functions is already found in Euler’s
De infinities infinitis gradibus tam infinite magnorum quam infinite parvo-
rum (On the infinite degrees of infinity of the infinitely large and infinitely
small) [1778], their systematic study was first undertaken by Paul du Bois-
Reymond. The groundwork for his theory was laid out in his paper Sur la
grandeur relative des infinis des functions (On the relative size of the infinities
of functions) [1870–1871] and developed in more than a dozen other works
(cf. [1875; 1877; 1882]).20 Much of the motivation for du Bois-Reymond’s
Infinitärcalcül (calculus of infinities) that is still of interest to researchers
today is encapsulated by the following remarks with which G. H. Hardy
begins his important monograph on du Bois-Reymond’s system.

The notions of the ‘order of greatness’ or ‘order of smallness’ of
a function f(n) of a positive integral variable n, when n is ‘large’,
or of a function f(x) of a continuous variable x, when x is ‘large’
or ‘small’ or ‘nearly equal to a’, are important even in the most
elementary stages of mathematical analysis. We learn there that
x2 tends to infinity with x, and moreover that x2 tends to infinity
more rapidly than x, i.e., that the ratio x2/x tends to infinity also;

20For a complete list of du Bois-Reymond’s writings on his Infinitärcalcül and a survey of
the contents thereof, see [Fisher 1981].
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and that x3 tends to infinity more rapidly than x2, and so on
indefinitely. We are thus led to the idea of a ‘scale of infinity’ (xn)
formed by the functions x, x2, x3, . . . , xn, . . . . This scale may be
supplemented and to some extent completed by the interpolation
of non-integral powers ofx. But there are functions whose rates of
increase cannot be measured by any of the functions of our scale,
even when thus completed. Thus logx tends to infinity more
slowly, and ex more rapidly, than any power of x; and x/(logx)
tends to infinity more slowly than x, but more rapidly than any
power of x less than the first.
As we proceed further in analysis, and come into contact with
its modern developments, such as the theory of Fourier’s series,
the theory of integral functions, or the theory of singular points
of analytic functions in general, the importance of these ideas
becomes greater and greater. It is the systematic study of them,
the investigation of general theorems concerning them and ready
methods of handling them, that is the subject of Paul du Bois-
Reymond’s Infinitärcalcül or ‘calculus of infinities’. [Hardy 1910,
pp. 1–2]

Du Bois-Reymond erects his Infinitärcalcül primarily on families of in-
creasing functions from R+ = {x ∈ R : x > 0} to R+ such that for each
function f of a given family, lim

x→∞
f(x) = +∞, and for each pair of func-

tions f and g of the family, 0 ≤ lim
x→∞

f(x)/g(x) ≤ +∞. He assigns to each
such function f a so-called infinity, and defines an ordering on the infinities
of such functions by stipulating that for each pair of such functions f and g:

f(x) has an infinity greater than that of g(x), if lim
x→∞

f(x)/g(x) =∞;

f(x) has an infinity equal to that of g(x), if lim
x→∞

f(x)/g(x) = a ∈ R+;

f(x) has an infinity less than that of g(x), if lim
x→∞

f(x)/g(x) = 0.

In accordance with this scheme, the infinities of the following functions

. . . , ee
x
, ex , . . . , xn, . . . , x3, x2, x, x1/2, x1/3, . . . , x1/n, . . . , lnx, ln(lnx), . . .

increase as we move from right to left. Moreover, as the comparative graphs
of several of these functions illustrate (see Figure 2), given any two functions
f and g from a family of the just-said kind, f(x) has a greater infinity than
g(x) if f(x) > g(x) for all x > some x0.
Unfortunately, du Bois-Reymond was not always as clear as one would
hope about the precise contents of the families of functions with which he
was concerned; nor did he make any real use of arithmetic operations on
the infinities arising from such families and attempt thereby to bring algebra
to his infinities as Otto Stolz [1883; 1885] and others later would. On the
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Figure 2.

other hand, he did establish a number of order-theoretic results regarding
his “infinities”, including those referred to by Hardy above, that provided
intimations of their inability to be adequately represented by ordered sets
of real numbers and, hence, by ordered subsets of Archimedean ordered
groups.
It was the just-said intimations along with arithmetic hints contained
in du Bois-Reymond’s [1877] that Otto Stolz [1883] seized upon when he
established for the first time the existence of a non-Archimedean ordered
algebraic system (see [Ehrlich 2006] for historical details).
Stolz [1883, pp. 506–507] considers the set of all functions f : R+ → R+

for which lim
x→∞

f(x) = +∞ formed by means of finite combinations of

the operations +, −, · and ÷ from positive rational powers of the functions
x, lnx, ln(lnx), . . . , ex , ee

x
, . . . where lnx is the natural logarithm of x and e

is the base of the natural logarithm. Following du Bois-Reymond, Stolz
assigns to each such function f an infinity—which he denotes“A(f)”—and
defines an ordering on the infinities of such functions in the manner specified
above. To complete the construction, Stolz defines addition and subtraction
of the infinities by the rules:

A(f) +A(g) = A(f · g),
A(f) −A(g) = A(f/g), if A(f) > A(g),
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and shows that the resulting structure (with equivalence classes of functions
with equal infinities taken as the elements) is the positive cone of a non-
Archimedean, divisible ordered abelian group, where (1/n)A(f) = A( n

√
f).

Stolz further observes that one can supplement the above structure with an
“ideal element” A(1)—the order of finitude—to serve as an additive identity,
and that one can also consider orders of vanishing or orders of infinitesimali-
tude by taking into account functions f for which lim

x→∞
f(x) = 0.

While du Bois-Reymond usually restricted his investigations to families of
the above said kind, on occasion he mistakenly assumed that each pair of
increasing functionsf and g fromR+ toR+ for which lim

x→∞
f(x) = +∞ and

lim
x→∞

g(x) = +∞ could be compared infinitarily in the manner described
above. This led him to postulate the existence of an all-inclusive ordering of
the infinities of such real functions—an infinitary pantachie, as he called it
[1882, p. 220].21 Such a pantachie, according to du Bois-Reymond, would
provide a conception of a numerical linear continuum richer than that of
Cantor and Dedekind.
However, having demonstrated (as Stolz [1879, p. 232] and Pincherle
[1884, p. 742] had before him) that there could be no such all-inclusive or-
dering of the infinities of such functions, Georg Cantor proclaimed: “the
‘infinitary pantachie,’ of du Bois-Reymond, belongs in the wastebasket as
nothing but paper numbers!” [1895, p. 107]. Hausdorff, by contrast, sug-
gested, “[t]here is no reason to reject the entire theory because of the pos-
sibility of incomparable functions as G. Cantor has done” [1907, p. 107],
and in its place undertook the study of maximally inclusive sets of pairwise
comparable real functions, each of which, retaining du Bois-Reymond’s term,
he calls an infinitary pantachie or a pantachie for short. This led him to his
well-known investigation of ç1-orderings (and çα-orderings more generally)
[1907], and to the following less well-known theorem.

Hausdorff 1 (Hausdorff 1907; 1909). Infinitary pantachies exist. If P is
an infinitary pantachie, then P is an ç1-ordering of power 2

ℵ0 ; in fact, P is (up
to isomorphism) the unique ç1-ordering of power ℵ1, assuming (the Continuum
Hypothesis) CH.

Hausdorff’s theorem is actually more general than our previous remarks
suggest. For in addition to modifying du Bois-Reymond’s conception of an
infinitary pantachie, Hausdorff redirected du Bois-Reymond’s investigation
by investigating numerical sequences rather than continuous functions (al-
though, see below), deleting themonotonicity assumption, and replacing the
infinitary rank ordering with the final rank ordering (which was illustrated
above). That is, Hausdorff redirected du Bois-Reymond’s investigation to

21Du Bois-Reymond explains that his adjective “pantachie” derives from the Greek words
for “everywhere”.
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the study of subsets of the set B of all numerical sequences

A = (a1, a2, a3, . . . , an, . . . )

in which the an are real numbers, and he defines the “final ordering” on B
(and subsets thereof) by the conditions A < B if eventually an < bn, A = B
if eventually an = bn , A > B if eventually an > bn, and A ‖ B (i.e., A is
incomparable with B) in all other cases, where “eventually” means for all
values of n with the exception of a finite number, thus for all n ≥ some n0
[1909 in 2005, p. 276].22 Hausdorff, who bases his theory on representative
elements of the equivalences classes of eventually equal numerical sequences
rather than on the equivalence classes themselves, calls a subset B of B
totally ordered by the final order a pantachie if it is not properly contained
in another subset of B totally ordered by the final order.
However, as Hausdorff emphasizes, the above result is also applicable to
pantachies consisting solely of continuous functions since each pantachie
of numerical sequences is order isomorphic to a pantachie of only continu-
ous functions, and vice versa [1907, p. 112; 1907 in 2005, p. 134]. For, as
Hausdorff observes: “a continuous function α(x) can be associated with
each numerical sequence A in an infinity of ways so that the infinitary re-
lations are preserved. The most obvious way is to define a piecewise linear
function by α(x) = an(n + 1 − x) + an+1(x − n) for n ≤ x ≤ n + 1,
i.e., by connecting the points with rectangular coordinates (n, an) by a line
graph.” And conversely, one may map each continuous function f(x) to a
cofinal sequence f(1), f(2), . . . , f(n), . . . [1907, pp. 111–112; 1907 in 2005,
pp. 133–134].
In his investigation of 1907, Hausdorff also raises the question of the
existence of a pantachie that is algebraically a field, but he only makes
partial headway in providing an answer. However, in 1909 he returned to
the problem and provided a stunning positive answer. Indeed, beginning
with the ordered set of numerical sequences of the form (r, r, r, . . . , r, . . . )
where r is a rational number, and utilizing what appears to be the very
first algebraic application of his maximal principle, Hausdorff proves the
following little-known, remarkable result.

Hausdorff 2 (1909). There is a pantachie of numerical sequences, hence-
forth Hp, that is an ordered field, whose field operations are given by

A+ B = (a1 + b1, a2 + b2, . . . , an + bn, . . . ),

A− B = (a1 − b1, a2 − b2, . . . , an − bn, . . . ),

22Strictly speaking, in his [1907] unlike his [1909] and [1914, pp. 189–194], Hausdorff only
considers numerical sequences in which the an are positive real numbers. However, the proof
of the above theorem carries over to the more general case. Moreover, in his [1907], unlike
his later works, he uses the term “finally” instead of “eventually” in the definitions of <, >,
= and ‖.
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AB = (a1b1, a2b2, . . . , anbn , . . . ),

A/B = (a1/b1, a2/b2, . . . , an/bn , . . . ),

where A+ B , A− B , AB and A/B are defined up to final equality. Any such
pantachie is, in fact, a real-closed ordered field.

Writing before Artin and Schrier [1926], Hausdorff of course does not
refer to Hp as real closed; but he essentially establishes Hp is real-closed by
showing it is the union of a chain of ordered fields, each of which admits no
algebraic extension to a more inclusive ordered field. Moreover, recognizing
the real-closed nature of Hp was not the only forward looking feature of
Hausdorff 2. Indeed, as J. M. Plotkin observes in his Introduction to his
recent translation of Hausdorff’s paper: “the resulting structure would be
recognized today by model theorists as the reduced power of the real field
R over the index set N modulo the filter Cof (N) of cofinite subsets of N”
[Plotkin 2005, p. 269].
The following result, whose proof uses the fact thatHp is a real-closed field
that is an ç1-ordering of power 2

ℵ0 , brings to the fore the relation between
real-closed pantachies and No.

Theorem 17. Let Hp be an ordered field that is a pantachie. Then Hp is
isomorphic with an initial subfield of No extending No(ù1); in fact, assuming
CH, Hp is isomorphic to No(ù1) and, hence, to R((ô

No(ù1)))ù1 .

Proof. By trivial variations in the argument employed in [Ehrlich 1988:
Lemma 1 and p. 15], No(ù1) is a real-closed field that is an ç1-ordering of
power 2ℵ0 . By Theorem 15, No(ù1) = R((ôNo(ù1)))ù1 which, by Corollary 2,

is isomorphic to R((tNo(ù1)))ù1 . But Esterle [1977: Section 3], extending the
classical work of Alling [1962], has shown that every real-closed field that
is an ç1-ordering contains an isomorphic copy of R((t

No(ù1)))ù1 . Accord-
ingly, by employing the classical embedding theory for real-closed ordered
fields in conjunction with sufficiently many applications of Theorem 7, the
canonical isomorphism from R((tNo(ù1)))ù1 onto R((ô

No(ù1)))ù1 can readily

be extended to an isomorphism of a real-closed extension of R((tNo(ù1)))ù1
onto an initial subfield of No that is an extension of

R((ôNo(ù1)))ù1 = No(ù1).

To complete the proof it only remains to recall the classical result of Erdös,
Gillman and Henriksen [1955: also see Gillman and Jerison 1961: Theorem
13.13] that there is (up to isomorphism) a unique real-closed ordered field
that is an ç1-ordering of power ℵ1, if CH is the case. ⊣
Much as Hausdorff realized that Hausdorff 1 is also applicable to pan-
tachies of continuous functions, he was aware the same is true of Haus-
dorff 2 (with the field operations appropriately construed). Apparently un-
aware of Hausdorff’s work, Boshernitzan [1981], working with equivalence
classes rather than with representative elements, essentially rediscovered
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Hausdorff 2 for the case of continuous real-valued functions f(x) defined
for sufficiently large x. In Boshernitzan’s terminology, there are maximal
B-fields (which, in virtue of his [1981: Proposition 3.4], are real-closed). Es-
sentially being pantachies in Hausdorff’s sense, maximal B-fields fall under
the umbrella of Theorem 17.
One year after Hausdorff publishedHausdorff 2, G. H. Hardy published
the monograph on du-Bois-Reymond’s theory from which we quoted above.
The express purpose of the monograph is “to bring the Infinitärcalcül up to
date, stating explicitly and proving carefully a number of general theorems
the truth of which Du Bois-Reymond seems to have tacitly assumed” [1910:
Preface]. For this purpose Hardy identified, and provided a systematic
analysis of, a class of logarithmico-exponential functions–L-functions as he
calls them—consisting of “real one-valued functions defined, for all values
of x greater than some definite value, by a finite combination of the ordinary
algebraic operations (viz. +, −, ·, ÷ and n

√
) and the functional symbols

log(. . . ) and e(... ), operating on the variable x and on real constants” [Hardy
1910; 1924, p. 17]. Drawing inspiration from Hardy’s work on L-functions,
Bourbaki [1951, pp. 107–126; 1976] introduced the idea of aHardy field and
developed the basic theory thereof. According to Aschenbrenner and van
den Dries, “[t]his theory is the modern incarnation of ideas on “Orders of
Infinity” originating with Du Bois-Reymond and put on a firm foundation
by Hardy” [2000, p. 309].
Bourbaki bases the theory on germs of functions at∞. More specifically,
letf and g be real valued functions defined on intervals of the form {x ∈ R :
x > a} for some a ∈ R. For example, {(x, x3) : x > 2} and {(x, x + 7):
x > −4} are real-valued functions of this form. f and g are said to have
the same germ at ∞, written f = g, if eventually f(x) = g(x). A Hardy
Field H is a set of germs at∞ that is closed under differentiation (f ′ ∈ H
whenever f ∈ H , where f′ is the derivative of f) that forms a field under
the component-wise operations f + g = f + g and f · g = f · g, where
f + g and f · g are the corresponding operations on functions. H admits
a relational extension to an ordered field in accordance with the definition:
f > g if f − g is ultimately positive for f, g ∈ H . Henceforth, we will not
distinguish notationally between a function and its germ.
A Hardy field H will be said to be a real-closed logarithmico-exponential
Hardy field if it is a real-closed extension of R(x) such that exp(f) ∈ H if
f ∈ H , and log(f) ∈ H if f ∈ H and f > 0, where exp(f) and log(f)
denote the germs of exp ◦f and log ◦f, respectively. As is well known, every
Hardy field admits an extension to a real-closed logarithmico-exponential
Hardy field (see, for example, [Kuhlmann 2001: Theorem 6.17]).23

23What we call a real-closed logarithmico-exponential Hardy field, Kuhlmann [2000, p. 94]
simply calls an exponential Hardy field.
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Following Bourbaki [1951, pp. 113–114], let H be the Hardy field of
germs of L-functions described above. Also let LE be the smallest real-
closed logarithmico-exponential Hardy field containingH.24 Then LE is the
smallest real-closed logarithmico-exponential Hardy field in the sense that
every real-closed logarithmico-exponential Hardy field contains LE.
Theorem 19 below expresses a critical relation between LE and No. We
now set the stage for proving the theorem by introducing some terminology
and recalling some further properties of the No(ë)’s introduced in Theo-
rem 15.
For each m ∈ N, let R{X1, . . . , Xm} be the ring of all real power series in
X1, . . . , Xm that converge in a neighborhood of I

m = [−1, 1]m. Moreover,
for f ∈ R{X1 . . . , Xm} let f̃: Rm → R be given by

f̃(x) =

{
f(x), for x ∈ Im,
0, for x /∈ Im.

Following van den Dries, Macintyre and Marker (D-M-M) [1994], the f̃’s
so defined are called restricted analytic functions. Let Ran be the reals
with its natural Lan-structure, where Lan is the language of ordered rings
{<, 0, 1,+,−, ·} supplemented by a new function symbol for each function
f̃, and further let Noan be the relational extension of No that arises by ex-
tending No to an Lan-structure as in [van den Dries and Ehrlich 2001]. Also
let Ran,exp be the reals with its natural Lan,exp-structure, where Lan,exp is Lan
supplemented by a new function symbol for exponentiation. And, finally,
let ex denote (with minor abuse of notation) both the exponential function
in the reals and the well-behaved exponential function on the surreals men-
tioned in §1 that extends the familiar operation on real numbers [Gonshor
1986, Chapter 10].

Theorem 18 (van den Dries and Ehrlich 2001). Let ë be an ε-number.
Then the field No(ë) is closed under exponentiation, and under taking log-
arithms of positive elements. In fact, the field No(ë) equipped with the re-
stricted analytic functions and exponentiation induced by No is an elementary
substructure of (Noan, e

x) and an elementary extension of (Ran, e
x).

Now suppose ε0 is the least ε-number, i.e., let ε0 be the least ordinal greater
than ù,ùù, ùù

ù
, . . . .

24In his [1910, p. 20; 1924, p. 17], Hardy mentions a possible extension of his system H
of L-functions, which he adopts in his [1912]. LE, which is characterized in a number of
different though equivalent ways in the literature (cf. [Boshernitzan 1981, p. 235], [van den
Dries, Macintyre andMarker 1997, p. 426] and [Kuhlmann 2001, pp. 94, 111]), is sometimes
generously attributed to Hardy. However, van den Dries has shown the author a proof that
LE properly contains both H and Hardy’s extension thereof.
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Theorem 19. There is a unique ordered field embedding h of LE intoNo(ε0)
defined by the conditions: h(r) = r for all r ∈ R, h(x) = ù and h(ef) = eh(f)

for all f ∈ LE. Moreover, the image of LE is an initial subtree of No(ε0),
and the image of the sequence x, ex , ee

x
, ee

ex

, . . . is cofinal with No(ε0). In

particular, h(x) = ù, h(ex) = eù = ùù , h(ee
x
) = ee

ù
= ùù

ù
, h(ee

ex

) =

ee
eù

= ùù
ùù

, . . . .

Proof. (Existence): The proof is an adaptation of an argument of D-M-
M [1997]. Let (No(ε0)an, e

x) be the fieldNo(ε0) equipped with the restricted
analytic functions and exponentiation induced by No. By Theorem 18,
No(ε0)an, e

x) is an elementary extensionof (Ran, e
x). LetHLE be the smallest

real-closed subfield ofNo(ε0) containingR(ù) and closed under log and exp,
and further letHan,exp be the smallest elementary submodel of (No(ε0)an, ex)
containing R(ù). Clearly R(ù) ⊂ HLE ⊂ Han,exp . Now let H (Ran,exp) be
the field of germs at ∞ of the functions f: R → R definable in Ran,exp. In
virtue of D-M-M’s [1994 §5], there is a well-defined Lan,exp-isomorphism
fromH (Ran,exp), which is a Hardy field, ontoHan,exp that sends the germ of
the identity function x to ù [1997, p. 426]. The (exponential) ordered field
embedding h in the statement of the theorem is simply the restriction of the
Lan,exp-map to LE.

(Uniqueness): Extend the language Lan,exp by new function symbols, one
for each semialgebraic function from Rn to R. Let this extended language
be L′, and construe LE and No as L′-structures (extending the L′-structure
R) in the obvious way. Then LE is generated as an L′-structure over R by
(the germ of) x, that is, each element of LE is given by anL′-term t(x). Any
embedding h as defined above is an L′-homomorphism and thus maps any
element t(x) in LE to t(ù) which shows that h is unique.

(Initial Subtree): By Corollary 2 (ii),No(ε0)an, e
x) is a truncation closed,

cross-sectional subfield of the Hahn field in No induced by No(ε0). More-
over, by essentially the same argument D-M-M employ to prove that their
HLE and Han,exp are truncation closed subfields of the ordered power series
field R((t))LE [1997: Corollary 3.9, p. 425], HLE and Han,exp are trunca-
tion closed subfields of No(ε0) with its natural power series structure. This
together with the fact that R(ù) ⊂ HLE ⊂ Han,exp implies that HLE and
Han,exp are truncation closed, cross sectional subfields of the Hahn fields in
No induced by HLE and Han,exp respectively; and so, by Theorem 14, HLE
and Han,exp are initial subfields (of No and hence) of No(ε0). Finally, the
cofinality portion of the theorem is an immediate consequence of the defini-
tions of h and No(ε0) together with Theorems 10.11 and 10.14 of [Gonshor
1986]. ⊣
LE includes the germs of the aforementioned functions employed by Stolz
in his groundbreaking investigation of 1883. Using this and the fact that
every real-closed logarithmico-exponential Hardy field contains LE, it is
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a simple matter to prove the following result that expresses the histori-
cally important relation between Stolz’s orders of infinity of functions and
the divisible ordered abelian group of Archimedean classes of real-closed
logarithmico-exponential Hardy fields.

Proposition 5. Let H be a real-closed logarithmico-exponential Hardy
field. Stolz’s system of orders of infinity is isomorphic to the strictly posi-
tive cone of a subgroup of the value group (i.e., the divisible ordered abelian
group of Archimedean classes) of H .

Every Hardy field can be extended to a maximal (non-extensible) Hardy
field. Maximal Hardy fields are real-closed logarithmico-exponential Hardy
fields having other nice properties [Sjödin 1971; Robinson 1972; Bosher-
nitzan 1981]. Whether maximal Hardy fields are pantachies or even ç1-
orderings does not appear to have been explored. We suspect this is a con-
sequence of the fact that the modern algebraic works on orders of infinity,
beginning with the writings of Hardy, have lost sight of Hausdorff’s classical
investigations.25 On the other hand, Sjödin [1971: Lemma 4, p. 221 and The-
orem 6, p. 231] has shown that maximal Hardy fields contain no countable
cofinal subset, and this coupled with the fact that maximal Hardy fields are
ordered fields, further implies that maximal Hardy fields have no countable
coinitial subset and that for each field member x, {y : y < x} ({y : y > x})
has no countable cofinal (coinitial) subset. Accordingly, whether or not
maximal Hardy fields are ç1-orderings turns on whether or not they have
(ù,ù∗)-gaps. While we suspect they do not, we know of no proof of this.
Furthermore, by Hausdorff’s construction, any maximal Hardy field that
is not a pantachie can be extended to a real-closed pantachie. However,
while the functions contained in the set-theoretic difference of the two struc-
tures could be continuous (and perhaps even differentiable), the resulting
pantachie could not be closed under differentiation.

§9. Hyperreal number systems. In the early 1960s Abraham Robinson
[1961, 1966] made the momentous discovery that among the real-closed
extensions of the reals there are number systems that can provide the basis
for a consistent and entirely satisfactory nonstandard approach to analysis
based on infinitesimals. Robinson motivated his work with the following
words, which make clear that he was well aware of the non-Archimedean
contributions of his forerunners.

25An important exception is Abraham Robinson’s [1972]. However, outside of Robinson’s
passing remark to the effect that in [Hausdorff 1909] “Felix Hausdorff made significant
contributions” to du Bois-Reymond’s theory, no indication of Hausdorff’s contributions is
provided.
Kurt Gödel also appreciated the significance of Hausdorff’s work on pantachies, though

his interest was largely set theoretic. For Gödel’s interest in pantachies and the relevance
pantachies have for contemporary set theory, see [Kanamori 2007, §8].



34 PHILIP EHRLICH

It is our main purpose to show that these models [i.e., num-
ber systems] provide a natural approach to the age-old problem
of producing a calculus involving infinitesimal (infinitely small)
and infinitely large quantities. As is well known, the use of in-
finitesimals, strongly advocated by Leibnitz and unhesitatingly
accepted by Euler fell into disrepute after the advent of Cauchy’s
methods which put Mathematical Analysis on a firm foundation.
Accepting Cauchy’s standards of rigor, later figures in the do-
main of non-archimedean quantities concerned themselves only
with small fragments of the edifice of Mathematical Analysis. We
mention only du Bois-Reymond’s Calculus of infinities [1875] and
Hahn’s work on non-archimedean fields [1907] which in turn were
followed by the theories of Artin–Schreier [1926] and, returning
to analysis, of Hewitt [1948] and Erdös, Gillman and Henriksen
[1955]. Finally, a recent and rather successful effort at develop-
ing a calculus of infinitesimals is due to Schmieden and Laugwitz
[1958] whose number system consists of infinite sequences of ra-
tional numbers. The drawback of this system is that it includes
zero-divisors and that it is only partially ordered. In consequence,
many classical results of theDifferential and Integral calculus have
to be modified to meet the changed circumstance. [1961/1979,
p. 4]

Being ordered fields, Robinson’s number systems do not have the just-
cited consequences of the number system of Schmieden and Laugwitz. By
analogy with Thoralf Skolem’s [1934] nonstandard model of arithmetic, a
number system from which Robinson drew inspiration, Robinson called
his totally ordered number systems nonstandard models of analysis. These
number systems, which are now more often called hyperreal number systems
[Keisler 1976, 1994], may be characterized as follows: let 〈R, S : S ∈ F〉
be a relational structure where F is the set of all finitary relations defined
on R (including all functions). Furthermore, let R∗ be a proper extension
of R and for each n-ary relation S ∈ F let S∗ be an n-ary relation on R∗

that is an extension of S. The structure 〈R∗,R, S∗ : S ∈ F〉 is said to be a
hyperreal number system if it satisfies the transfer principle: every n-tuple of
real numbers satisfies the same first-order formulas in 〈R, S : S ∈ F〉 as it
satisfies in 〈R∗,R, S∗ : S ∈ F〉.
The existence of hyperreal number systems is a consequence of the com-
pactness theorem of first-order logic and there are a number of algebraic
techniques that can be employed to construct such a system. One commonly
used technique is the ultrapower construction (cf. Keisler [1976, pp. 48–57];
Goldblatt [1998, chapter 3]), though not all hyperreal number systems can
be obtained this way. By results of H. J. Keisler [1963; 1976, pp. 58–59],
however, every hyperreal number system is isomorphic to a limit ultrapower.
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Since every real-closed ordered field is isomorphic to an initial subfield
of No, the underlying ordered field of any hyperreal number system is
likewise isomorphic to an initial subfield of No. For example, the famil-
iar ultrapower construction of a hyperreal number system as a quotient
ring of RN (modulo a given nonprincipal ultrafilter on N) is isomorphic to
No(ù1) = R((ôNo(ù1)))ù1 assuming CH, insofar as any such quotient ring
of RN is a real-closed field that is an ç1-ordering of power 2

ℵ0 [Goldblatt
1998, p. 33]. Similarly, if we assume there is an uncountable inaccessible
cardinal, ùα being the least, then No(ùα) = R((ôNo(ùα)))ùα is isomorphic
to the underlying ordered field in the hyperreal number system employed by
Keisler in his Foundations of Infinitesimal Calculus [1976].
In the remainder of this section we will see that No = R((ôNo))On itself
can be employed as the underlying ordered field in what may be naturally
described as the maximal hyperreal number system in NBG. For this pur-
pose, we begin with Keisler’s well-known foundation for Robinson’s Theory
of Infinitesimals presented in his just-cited work and in the Epilog of the 2nd
edition of his corresponding text [1986].

Keisler’s Axioms for Hyperreal Number Systems

Axiom A. R is a complete ordered field.

Axiom B. R∗ is a proper ordered field extension of R.

Axiom C (Function Axiom). For each real functionf of n variables there
is a corresponding hyperreal function f∗ of n variables, called the natural
extension of f. The field operations of R∗ are the natural extensions of the
field operations of R.

Axiom D (Solution Axiom). If two systems of formulas [finite sets of
equations or inequalities between terms] have exactly the same real solu-
tions, they have exactly the same hyperreal solutions.

Commenting on these axioms, Keisler observes:

The real numbers are the unique complete ordered field. By anal-
ogy, we would like to uniquely characterize the hyperreal structure
〈R,R∗, ∗〉 by some sort of completeness property. However, we
run into a set-theoretic difficulty; there are structures R∗ of arbi-
trary large cardinal number which satisfy Axioms A–D, so there
cannot be a largest one. Two ways around this difficulty are to
make R∗ a proper class rather than a set, or to put a restriction on
the cardinal number of R∗. We use the second method because it
is simpler. [Keisler 1976, p. 59]

Central to Keisler’s solution to the uniqueness problem is the idea of a sat-
urated hyperreal number system. A hyperreal number system 〈R∗,R, S∗ :
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S ∈ F〉 is said to be κ-saturated if any set of formulas with constants
from R∗ of power less than κ is satisfiable whenever it is finitely satisfi-
able. If κ is the power of R∗, the hyperreal number system is said to
be saturated. Although there is a wide range of hyperreal number sys-
tems in ZFC that are saturated to varying degrees of power less than the
power of R∗, saturated hyperreal number systems cannot be proved to exist
in ZFC. In virtue of classical results from the theory of saturated mod-
els, however, there is (up to isomorphism) a unique saturated hyperreal
number system of power κ whenever κ > 2ℵ0 and either κ is (strongly)
inaccessible or the generalized continuum hypothesis (GCH) holds at κ
(i.e., κ = ℵα+1 = 2ℵα for some α). So, for example, by supplement-
ing ZFC with the assumption of the existence of an uncountable inacces-
sible cardinal, one can obtain uniqueness (up to isomorphism) by limit-
ing attention to saturated hyperreal number systems having the least such
power.
With the above in mind, Keisler sets the stage to overcome the uniqueness
problem by introducing the following axiom, and then proceeds to prove the
subsequent theorem.

Axiom E (Saturation Axiom). LetS be a set of equations and inequalities
involving real functions, hyperreal constants, and variables, such that S has
a smaller cardinality than R∗. If every finite subset of S has a hyperreal
solution, then S has a hyperreal solution.

Keisler 1 [1976]. There is up to isomorphism a unique structure 〈R,R∗, ∗〉
such that Axioms A–E are satisfied and the cardinality of R∗ is the first
uncountable inaccessible cardinal.

If 〈R,R∗, ∗〉 satisfies Axioms A–D, then R∗ is of course real-closed. It
is also evident that, if 〈R,R∗, ∗〉 further satisfies Axiom E, then R∗ is an
çα-ordering of power ℵα, where ℵα is the power of R∗. Accordingly,
since (in NBG) No is (up to isomorphism) the unique real-closed field
that is an çOn-ordering of power ℵOn (see Theorem 3 and Note 5), R∗

would be isomorphic to No in any model of A–E that is a proper class (in
NBG).
Motivated by the above, in September of 2002 we wrote to Keisler, re-
minded him of his idea of making “R∗ a proper class rather than a set”,
observed that in such a model R∗ would be isomorphic to No, and inquired
how he had intended to prove the result for proper classes since the proof
he employs, which uses a superstructure, cannot be carried out for proper
classes in NBG or in any of the most familiar alternative class theories.26

26The difficulty is that, in addition to No, such a proof would require the power class
P(No) of all subclasses ofNo, the power class P(P(No)) of all subclasses of subclasses ofNo
and so on, none of which exist in NBG.
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In response, Keisler offered the following revealing remarks, which he has
graciously granted us permission to reproduce.

What I had in mind in getting around the uniqueness problem for
the hyperreals in “Foundations of Infinitesimal Calculus” was to
work in NBG with global choice (i.e., a class of ordered pairs that
well orders the universe). This is a conservative extension of ZFC.
I was not thinking of doing it within a superstructure, but just
getting four objects R, R∗, <∗, ∗ which satisfy Axioms A–E. R is
a set, R∗ is a proper class, <∗ is a proper class of ordered pairs of
elements of R∗, and ∗ is a proper class of ordered triples (f, x, y)
of sets, wheref is an n-ary real function for some n, x is an n-tuple
of elements of R∗ and y is in R∗. In this setup, f∗(x) = y means
that (f, x, y) is in the class ∗. There should be no problem with ∗
being a legitimate entity in NBG with global choice. Since each
ordered triple of sets is again a set, ∗ is just a class of sets. I believe
that this can be done in an explicit way so that R, R∗, <∗, and
∗ are definable in NBG with an extra symbol for a well ordering
of V . [Keisler to Ehrlich 10/20/02]

Moreover, in a subsequent letter, Keisler went on to add:

I did not do it that way because it would have required a longer
discussion of the set theoretic background. [Keisler to Ehrlich
5/14/06]

Anticipating, however, that the details of Keisler’s proof-plan can indeed
be carried out in NBG, we draw the main body of the paper to a close by
announcing the following intriguing result.

Theorem 20. In NBG there is (up to isomorphism) a unique structure
〈R,R∗, ∗〉 such that Axioms A–E are satisfied and for which R∗ is a proper
class; moreover, in such a structure R∗ is isomorphic to No. Such a structure
is in fact (to within isomorphism) the unique model of Axioms A–E whose
existence can be established in NBG without additional assumptions.

Appendix: Proof of Theorem 7

Central to our proof of Theorem 7 is Theorem 14 and the following result,
the first part of which is due to Mourgues and Ressayre [1993: Lemma 3.4],
and the second part of which is a special case of a result of van den Dries
[1991: Theorem] (that was rediscovered by Fornasiero [2006]) that both
strengthens and generalizes a result of F. Delon that was rediscovered and
used to great effect by Mourgues and Ressayre [1991: Lemma 3.5; 1993:
Lemma 3.5].

On the other hand, as we mentioned to Keisler, his proof can be extended to the class case
in the equiconsistent set theory of Ackermann (see Note 7).
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Proposition 6. Let R be an ordered subfield of R, Γ be an ordered abelian
group, and A be a truncation closed subfield of R((tΓ)). Then:

I. If y ∈ R((tΓ))−A has all of its proper truncations inA, then the subfield
A(y) of R((tΓ)) is also truncation closed.

II. If R ⊂ A, then the algebraic closure of A in R((tΓ)) is also truncation
closed.

We also use the simple generalization of Corollary 2(ii) that, if Γ is an
initial subgroup of No that is a set and R is a subfield of R, then there is
a unique initial subfield R((ôΓ)) (defined in the expected manner) of No
containing {ùã : ã ∈ Γ} that is isomorphic to the power series field R((tΓ)).
Proof of Theorem 7. Let A be a real-closed initial subfield of No (whose
universe is a set). Then Γ = {ã ∈ No : ùã ∈ A} is a divisible initial subgroup
of No and R = {r ∈ R : rù0 ∈ A} is a real-closed initial subfield of No. Let
x be the simplest member of No that fills a cut in A. Then all the proper
truncations of the Conway name of x are in A. Either x ∈ R((ôΓ)) or
x /∈ R((ôΓ)). First suppose x ∈ R((ôΓ)). Then by Part I of Proposition 6,
A(x) is a truncation closed subfield ofR((ôΓ)). Now letR be the real-closure
in No of {r ∈ R : rù0 ∈ A(x)}. Since A(x) ⊆ R((ôΓ)) and R((ôΓ)) is a
truncation closed subfield of R((ôΓ)), A(x) is a truncation closed subfield
of R((ôΓ)). Moreover, by repeatedly applying Part I of Proposition 6 to a
suitable (possibly empty) set of elements of the form rù0 where r ∈ R −R,
the subfieldA(x,R) ofR((ôΓ)) generated byA(x)∪R is likewise seen to be a
truncation closed subfield of R((ôΓ)). But then, by Part II of Proposition 6,
so is the real-closure of A(x,R) in R((ôΓ)). Moreover, since A is a cross-
sectional subfield of R((ôΓ)), so is the real-closure of A(x,R) in R((ôΓ)).
Furthermore, since A(x) ⊆ A(x,R) and the real-closure of A(x) inR((ôΓ))
containsA(x,R), the real-closures ofA(x) andA(x,R) inR((ôΓ)) coincide;
from which it follows that the real-closure of A(x) in R((ôΓ)) is an initial
subfield of R((ôΓ)) and, hence, of No. Next suppose x /∈ R((ôΓ)). Then
either (i) x = ùy where y is the simplest member of No that fills a cut in Γ,
the cuts (Γ,∅) and (∅,Γ) not being excluded, or (ii) x =

∑
α<â

ùãα · rα ± ùy

where the ãαs constitute a coinitial subset of Γ and y is the simplest member
of No that fills the cut (∅,Γ). However, since A(x) = A(ùy) when (ii) is
the case, (ii) reduces to a special case of (i). Thus, suppose (i) is the case.
Then, by Theorem 6, the divisible subgroup Γ′ of No generated by Γ ∪ {y}
is initial. Moreover, since A is a truncation closed subfield of R((ôΓ

′

)), by
Part I of Proposition 6 A(ùy) is a truncation closed subfield of R((ôΓ

′

)),
and by Part II, so is its real-closure in R((ôΓ

′

)). Moreover, since the real-
closure of A(ùy) in R((ôΓ

′

)) is a cross sectional subfield of R((ôΓ
′

)) in No,
by Theorem 14, the real-closure of A(ùy) in R((ôΓ

′

)) is an initial subfield of
R((ôΓ

′

)) and, hence, of No. ⊣
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und infinitäre Auflösung von Gleichungen, Mathematische Annalen, vol. 8, pp. 363–414;
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königlich sächsischen Gesellschaft der Wissenschaften zu Leipzig, Matematisch-Physische
Klasse, vol. 31, pp. 295–335, for English translation by J. M. Plotkin, see [Plotkin 2005].
Felix Hausdorff [1914], Grundzüge der Mengenlehre, Leipzig.
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