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Abstract: A number of conceptions of the continuum are examined from the perspective 

of conceptual structuralism, a view of the nature of mathematics according to which 

mathematics emerges from humanly constructed, intersubjectively established, basic 

structural conceptions.  This puts into question the idea from current set theory that the 

continuum is somehow a uniquely determined concept.   
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1. What is the continuum?  On the face of it, there are several distinct forms of the 

continuum as a mathematical concept: in geometry, as a straight line, in analysis as the 

real number system (characterized in one of several ways), and in set theory as the power 

set of the natural numbers and, alternatively, as the set of all infinite sequences of zeros 

and ones.  Since it is common to refer to the continuum, in what sense are these all 

instances of the same concept? When one speaks of the continuum in current set-

theoretical terms it is implicitly understood that one is paying attention only to the 

cardinal number that these sets have in common.  Besides ignoring the differences in 

structure involved, that requires, to begin with, recasting geometry in analytic terms.  

More centrally, it presumes acceptance of the overall set-theoretical framework.  And 

(unless one is a formalist or pragmatist about axiomatic set theory) underlying that is a 

philosophically realist stance as to the nature of mathematics, exemplified by Gödel in 

“What is Cantor’s continuum problem?” (1947).  Other philosophies of mathematics have 
                                                
1 This is an expanded version of a lecture that I gave for the Workshop on Philosophical 
Reflections on Set Theory held at the Centre de Cultura Contemporània de Barcelona on 
October 7, 2008, as an extension of the VIIIth International Ontology Congress held the 
previous week in San Sebastian.  I wish to thank the organizers of the Congress and 
Workshop for the opportunity to present my ideas in these two venues.    
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led to divergent conceptions of the continuum, such as that of Weyl (1918) in terms of 

predicative definability, and of Brouwer (1927) in terms of his intuitionistic theory of free 

choice sequences.  My purpose here is to provide still another philosophical perspective 

that I call conceptual structuralism for which the above conceptions of the continuum 

from geometry, analysis and set theory are essentially different.  Comparisons will also 

be made with some other conceptions of the continuum, including phenomenological, 

non-standard, predicativist, intuitionist, and physical interpretations, all of which fail to 

satisfy as basic structural conceptions.     

 

This article is a companion to another one (2008), in which my main concern is to 

examine Cantor’s Continuum Hypothesis (CH) from the point of view of conceptual 

structuralism.   I argue there, contrary to Gödel and his successors, that CH is not a 

definite mathematical problem since the concepts of set and function used in its 

formulation are inherently vague; that is, no sharpening of these concepts is possible that 

does not violate what they are supposed to be about.  That argument is not repeated here, 

but my general point of view is, as presented in the next section.   

 

2. Conceptual structuralism. Though the idea that the primary objects of mathematics 

are structures rather than individuals such as points, lines, numbers, etc., became a 

commonplace of 20th century mathematics, systematic structuralist philosophies of 

mathematics⎯due among others to Hellman (1989), Resnik (1997), Shapiro (1997), 

Chihara (2004), Parsons (2008) and Isaacson (2008)⎯are more recent.  Conceptual 

structuralism differs from all these.  By way of background to the reexamination below of 

conceptions of the continuum, let me repeat ten theses that spell it out as stated in 

Feferman (2008).2 

                                                
2 A slightly different version of the following theses was first presented in a lecture that I 
gave for the Philosophy Department Colloquium at Columbia University on Dec. 9, 
1977, under the title “Mathematics as objective subjectivity.”  The text of that lecture 
with some supplementary notes was later circulated but never published.  The theses by 
themselves were put on the internet on Jan. 3, 1998  for the FOM (Foundations of 
Mathematics) list at http://www.cs.nyu.edu/pipermail/fom/1998-January/000682.html , 
where they gave rise to interesting follow-up discussion.   
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1. The basic objects of mathematical thought exist only as mental conceptions, though the 

source of these conceptions lies in everyday experience in manifold ways, in the 

processes of counting, ordering, matching, combining, separating, and locating in space 

and time. 

2. Theoretical mathematics has its source in the recognition that these processes are 

independent of the materials or objects to which they are applied and that they are 

potentially endlessly repeatable.  

3. The basic conceptions of mathematics are of certain kinds of relatively simple ideal-

world pictures which are not of objects in isolation but of structures, i.e. coherently 

conceived groups of objects interconnected by a few simple relations and operations.  

They are communicated and understood prior to any axiomatics, indeed prior to any 

systematic logical development. 

4. Some significant features of these structures are elicited directly from the world-

pictures which describe them, while other features may be less certain.  Mathematics 

needs little to get started and, once started, a little bit goes a long way.   

5. Basic conceptions differ in their degree of clarity.  One may speak of what is true in a 

given conception, but that notion of truth may be partial.  Truth in full is applicable only 

to completely clear conceptions.   

6. What is clear in a given conception is time dependent, both for the individual and 

historically. 

7. Pure (theoretical) mathematics is a body of thought developed systematically by 

successive refinement and reflective expansion of basic structural conceptions. 

8. The general ideas of order, succession, collection, relation, rule and operation are pre-

mathematical; some implicit understanding of them is necessary to the understanding of 

mathematics.   

9. The general idea of property is pre-logical; some implicit understanding of that and of 

the logical particles is also a prerequisite to the understanding of mathematics.  The 

                                                                                                                                            
  The comparison with various views of “social constructivism” deserves elaboration, not 
provided here; the essential difference lies in the central, explicit role that I give to 
structural conceptions. 
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reasoning of mathematics is in principle logical, but in practice relies to a considerable 

extent on various forms of intuition in order to arrive at understanding and conviction.    

10. The objectivity of mathematics lies in its stability and coherence under repeated 

communication, critical scrutiny and expansion by many individuals often working  

independently of each other.  Incoherent concepts, or ones which fail to withstand critical 

examination or lead to conflicting conclusions are eventually filtered out from 

mathematics.  The objectivity of mathematics is a special case of intersubjective 

objectivity that is ubiquitous in social reality. 

 

By way of reinforcement of this last point, many examples of intersubjective objectivity 

in the constructions of social reality are given in the book by Searle (1995).3  As he says,  

 

[T]here are portions of the real world, objective facts in the world, that are only 

facts by human agreement.  In a sense there are things that exist only because we 

believe them to exist. ... things like money, property, governments, and marriages.  

Yet many facts regarding these things are ‘objective’ facts in the sense that they are 

not a matter of [our] preferences, evaluations, or moral attitudes.  (Searle 1995, p.1) 

 

He might well have added board games to the list of things that exist only because we 

believe them to exist, and facts such as that in the game of chess, it is not possible to 

force a checkmate with a king and two knights against a lone king.4  Unlike facts about 

one’s government, citizenship, finances, property, marital relations, and so on that are 

vitally important to our daily welfare since they constrain one’s actions and determine 

one’s “rights”, “responsibilities” and “obligations”, facts about the structure and 

execution of athletic games and board games are not essential to our well-being even 

though they may engage us passionately.  In this respect, mathematics is akin to games; 

the fact that there are infinitely many prime numbers is an example of a fact that is about 

                                                
3 Searle prefers the term ‘collective intentionality’ to ‘intersubjectivity’, which has a 
phenomenological history.  Since my emphasis is on firmly shared conceptions, 
understanding and knowledge, I prefer ‘intersubjective objectivity’ at the risk of that 
association.    
4 http://en.wikipedia.org/wiki/Two_knights_endgame . 
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our conception of the integers, a conception that is as clear as what we mean, for 

example, by the game of chess or the game of go.   

 

The nature of  language leads us to talk of social institutions, games and mathematical 

conceptions (among other aspects of social reality) as if they were things of some sort or 

other with a temporal existence, much like that of living beings.  So, for example, we 

speak of the game of chess in its present form as having evolved from earlier similar 

games in southern Europe in the 15th century; moreover, like mathematical conceptions it 

surely did not exist in any form in, say, 1,000,000 B.C.  Taken at face value, this kind of 

talk leads to philosophical puzzles.  What kinds of things are these?  And if they did not 

exist at a certain time, how is it possible to ascribe timeless truths to them, such as the 

facts about prime numbers and end games in chess just cited?  Must one say that it was 

not true in 1,000,000 B.C. that there are infinitely many primes, because the conception 

of the structure of integers and its derived concept of prime numbers did not exist then?  

Of course not.  But it doesn’t help to posit a kind of Popperian existence to a world of 

products of the human mind (another “thing”) to give the facts about chess and prime 

numbers timeless validity, because that is just another form of platonism.  It is simply a 

demonstrated fact, for example, that in the game of chess, it is not possible to force a 

checkmate against a lone king by means of a king and two knights.  And though the 

existence of mathematical conceptions is time dependent both for the human race and for 

individual humans, it doesn’t make sense to say that for those humans who do not grasp 

the concept of prime numbers, the infinity of primes is false; one can only say that that is 

a demonstrated truth about the standard conception of the prime numbers that must surely 

be accepted by whoever does grasp that concept and the usual proof.    

 

 Conceptual structuralism is illustrated in (Feferman 2008) by discussion of two 

constellations of structural notions, first of the positive integer sequence and second of 

the power set conception of the continuum.  For comparison with what I say below about 

the latter and other conceptions of the continuum, let me review briefly what I have to 

say there about the former.    
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The most primitive mathematical conception is that of the positive integer sequence as 

represented by the tallies: |, ||, |||, ... .  From the structural point of view, our conception is 

that of a structure (N+, 1, Sc, <), where N+ is generated from the initial unit 1 by closure 

under the successor operation Sc, and for which m < n if m precedes n in the generation 

procedure.  Certain facts about this structure (if one formulates them explicitly at all), are 

evident: that < is a total ordering of N+ for which 1 is the least element, and that m < n 

implies Sc(m) < Sc(n).  Reflecting on a given structure may lead us to elaborate it by 

adjoining further relations and operations and to expand basic principles accordingly.  

For example, in the case of N+, thinking of concatenation of tallies immediately leads us 

to the operation of addition, m + n, and that leads us to m × n as “m added to itself n 

times”. The basic properties of the + and × operations such as commutativity, 

associativity, distributivity, and cancellation are initially recognized only implicitly. We 

may then go on to introduce more distinctively mathematical notions such as the relations 

n|m and k ≡ m (mod n), and the property “n is a prime number”. In this language, a 

wealth of interesting mathematical statements can be formulated and investigated as to 

their truth or falsity, for example, that there are infinitely many twin prime numbers, that 

there are no odd perfect numbers, Goldbach’s conjecture, and so on.  

 

The conception of the structure (N+, 1, Sc, <, +, ×) is so intuitively clear that (again 

implicitly, at least) there is no question in the minds of mathematicians as to the definite 

meaning of such statements and the assertion that they are true or false, independently of 

whether we can establish them one way or the other. In other words, in more modern 

terms, realism in truth values is accepted for statements about this structure, and the 

application of classical logic in reasoning about such statements is automatically 

legitimized.  Despite the subjective source of the positive integer structure in the 

collective human understanding, it is in the domain of objective concepts and there is no 

reason to restrict oneself to intuitionistic logic on subjectivist grounds.  Further reflection 

on the structure of positive integers with the aim to simplify calculations and algebraic 

operations and laws leads directly to its extension to the structure of natural numbers  

(N, 0, Sc, <, +, ×), and then the structures for the integers Z and the rational numbers Q.  

The latter are relatively refined conceptions, not basic ones, but we are no less clear in 
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our dealings with them than for the basic conceptions of N+. 

 

At a further stage of reflection we may recognize the least number principle: if P(n) is 

any well-defined property of members of N and there is some n such that P(n) holds then 

there is a least such n. More advanced reflection leads to general principles of proof by 

induction and definition by recursion on N.  Furthermore, the general scheme of 

induction, 

   P(0) ∧ ∀n[P(n) → P(Sc(n))] → ∀n P(n), 

is taken to be open-ended in the sense that it is accepted for any definite property P of 

natural numbers that one meets in the process of doing mathematics, no matter what the 

subject matter and what the notions used in the formulation of P.  The question⎯What is 

a definite property?⎯requires in each instance the mathematician’s judgment.  For 

example, the property,”n is an odd perfect number”, is a definite property, while “n is a 

feasibly representable number” is not, nor is “n is the number of grains of sand in a 

heap”. 

 

3. Six conceptions of the continuum.  These are: (i) the Euclidean continuum, (ii) 

Cantor’s continuum, (iii) Dedekind’s continuum, (iv) the Hilbertian continuum, (v) the 

set of all paths in the full binary tree, and (vi) the set of all subsets of the natural numbers.  

By (ii) and (iii) I mean the two familiar ways of “constructing” and characterizing the 

real number structure.  By (iv), I mean the continuum as it appears in Hilbert’s system of 

geometry, whose continuity property is directly informed by the Dedekind completeness 

condition.  Let us look at these in more detail from the perspective of conceptual 

structuralism; neither historical accuracy nor comprehensiveness are guiding concerns.   

 

3.1 The Euclidean continuum.  In Euclidean geometry the continuum is exemplified by 

straight lines, indefinitely extended.  However, these are not conceived of as existing in 

isolation but rather as parts of the structural framework of plane geometry (and by 

extension, spatial geometry).  There, our informal intuitions are of the plane as being 

“perfectly flat”, of lines as being “perfectly straight,” and of points as being “perfectly 

fine.”  These intuitions are Janus faced.  On the one hand, our language leads us to treat 
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points and lines as objects for which the basic relation is that of a point lying on a line, 

viz. in such statements as, “For any two distinct points there exists a unique line on which 

they lie.”  On the other hand, our intuitions of points as being dimensionless⎯in Euclid’s 

terminology, as having “no parts”⎯and of lines as having “no breadth”, requires us to 

imagine entities which have no substance.  An alternative to objectual parlance is to think 

of points as being “pure locations”, but that makes talk of a specific point lying on a 

specific line sound odd.  Despite the fact that our intuitions must do double duty, they are 

sufficiently clear to recognize immediately, the validity of each of Euclid’s postulates 

other than, perhaps, the parallel postulate.   

 

The main thing to be emphasized about the conception of the continuum as it appears in 

Euclidean geometry is that the general concept of set is not part of the basic picture, and 

that Dedekind style continuity considerations of the sort discussed below are at odds with 

that picture.  It does not make sense, for example, to think of deleting a point from a line, 

or to remove the end point of a line segment.  Given two line segments L and L´, we can 

form a right triangle with legs L1 and L1´ congruent to the given segments, respectively; 

but these share a vertex as a common point, each an end point.  Thought of as a set, L is 

transformed into L´ by a rigid motion, and the same for L1 and L1´.  Thought of in that 

way, the vertex of the right triangle has displaced one of the end points, but which one?  

There are many similar thought experiments which dictate that lines, line segments and 

other figures in Euclidean geometry are not to be identified with their sets of points.5  It is 

true that we have some talk in the Euclidean framework that can be construed in set-

theoretical terms, as when we speak of a circle as the locus of points equidistant from a 

given point, or of conic sections as the intersection of a plane and a cone.  But these are 

in all cases specific kinds of sets given by visualizable descriptions. 

 

Dedekind style continuity considerations only emerged in the critical re-examination of 

the Euclidean development in the 19th century when it was recognized that several of its 

proofs assume the existence of certain points that are “supposed” to be there, but whose 

existence is not guaranteed by the Euclidean postulates.  In fact, this occurs at the very 
                                                
5 Cf. Giaquinto (2008), p. 58 for similar considerations. 
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outset in proposition I.1, which asserts that an equilateral triangle can be constructed on 

any line segment AB as base.  This is proved by constructing two circles C1 and C2, with 

centers A and B, respectively, and radius equal to AB.  The vertex of the equilateral 

triangle to be constructed is taken as either point of intersection of C1 and C2.  But there 

is nothing in the Euclidean postulates which guarantees that such points exist.  From the 

modern point of view, the circles may be “gappy”.  But that way of thinking is entirely 

foreign to Euclidean geometry, as is the general continuity axiom formulated in 

Hilbertian geometry below.  Some modern developments of Euclidean geometry add 

special continuity axioms (“line-line”, “line-circle”, “circle-circle”) asserting the 

existence of points that “ought to exist”, and indeed evidently exist in our basic picture, 

but don’t follow from the Euclidean postulates.  (For details, see Greenberg (2007) or 

Hartshorne (1997).)  One can imagine that Euclid himself might have acknowledged the 

logical necessity of adding such specific continuity postulates in one form or another if 

that were pointed out to him, but one cannot say that consideration of these questions is 

part of the basic picture.6   

 

3.2 Cantor’s continuum.  The following is an ancient idea, surely predating the 

Pythagoreans: given an arbitrarily fixed “unit line segment” U to which is ascribed the 

length 1, every line segment L has a number attached to it as length lh(L) relative to U.  

In abstract terms the physical process of measuring a line segment L is to lay off U within 

L as many times as possible, resulting, say, in n0U and then to measure the difference L − 

n0U by means of fractions U/k of U, obtained by subdividing U into k equal parts for 

some integer k ≥ 2, and then repeating the process.  From this picture it is seen that lh(L) 

is either rational or the limit of an increasing sequence of rational numbers, q0 = n0 = 

lh(n0U), q1 = n0 + n1/k = lh(n0U + n1U/k), q2 = n0 + n1/k + n2/k2 = lh(n0U + n1U/k + 

n2U/k2), … , where 0 ≤ ni < k for each i > 0.  Any system of numbers including the 
                                                
6 There is a considerable literature on these matters that would take us too far afield to 
plumb properly.  One view that is not part of the account given here of the basic 
structural conception in Euclidean geometry stresses the central role of constructions in 
Euclid’s proofs; according to that, for example, the intersection of the two circles in I.1 
exists because one can construct it.  But that does not obviously take care of Pasch’s 
axiom, that if a line goes through one side AB of a triangle ABC, it must intersect AC or 
BC (line-line continuity).    
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rational numbers that is to be complete for measurement in this way must be closed under 

the limit of increasing sequences of rational numbers that are bounded above; the two 

conditions together are met by closure under the limits of bounded non-decreasing 

sequences of rationals.  Assuming the real number system R, Cauchy found a necessary 

and sufficient condition on arbitrary sequences (xn) of real numbers in order for them to 

be convergent, namely that the limn,m → ∞ |xn − xm | = 0 or, as we would put it since 

Weierstrass, that for any k > 0, there exists a p such that for all n, m > p, |xn − xm | < 1/k; 

these are called fundamental sequences.  In particular, bounded non-decreasing sequences 

are fundamental.  So the first idea for “construction” of the real number system R would 

be to take it to consist of all bounded non-decreasing sequences of rational numbers, with 

two such sequences (xn) and (yn) identified if and only if limn→∞ |xn − yn| = 0.  But if real 

numbers are to be defined in such a way that we can also extend the arithmetical 

operations +, × and their inverses to them, it works out better to take R to consist of all 

fundamental sequences of rational numbers, identified in the same way; this construction, 

given in Cantor (1872) §1 and repeated in Cantor (1883) §9 is what I call Cantor’s 

continuum.  In that system, the ordering relation x < y between real numbers given by 

fundamental sequences of rational numbers x = (xn) and y = (yn) respectively is defined to 

hold when there exists k > 0 and a p such that for all n > p, (yn − xn) > 1/k.  The system 

thus constructed is an ordered field that satisfies the Cauchy criterion in general.  

Abstractly, R can then be characterized as the completion of the ordered field of rational 

numbers with respect to fundamental sequences.  This is a relatively sophisticated 

structural concept which hybridizes basic geometric and arithmetic ideas with the general 

(pre-)set-theoretical idea of arbitrary sequence.    

 

3.3 Dedekind’s continuum.  Here the basic intuition is quite different from that of the 

Cantor’s continuum.  Each line segment is to have a length equal to that of a segment AB 

where A and B are points in the continuum conceived of as a linearly ordered set going 

from “left” to “right”, and points are conceived to be elements of that set; in addition, the 

choice of AB is to be arbitrary up to rigid translation.  In particular, designating a point O 

chosen arbitrarily as the “origin”, each line segment is to have the same length as that of 

some segment OP, where P is to the right of O. Hence if U is an arbitrarily designated 
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unit line segment then there is to be a point I with lh(OI) = 1; by simple geometric 

constructions, every length commensurable with U is then represented as a rational 

number lh(OP) for some P.  But then by the existence of incommensurable lengths such 

as that of the diagonal of the square whose side is equal to U, it is inadequate to take the 

continuum to consist just of those points P (in either direction from O) for which lh(OP) 

is rational.  In other words, there are “gaps” in the linearly ordered rational number 

structure, while the continuum must have no gaps.  As Dedekind puts it:  

 

I find the essence of continuity … in the following principle:  

‘If all points of the straight line fall into two classes such that every point of the 

first class lies to the left of every point of the second class, then there exists one and 

only one point which produces this division of all points into two classes, this 

severing of the straight line into two portions.’  (Dedekind 1872, translation in 

Ewald 1996 p. 771) 

 

The more precise formulation uses the notion of a cut (X1, X2) in a linearly ordered set 

(M, <), which holds when both X1 and X2 are non-empty subsets of M whose union is M 

and is such that every member of X1 precedes every member  of X2.  Dedekind’s 

continuity requirement on a line C is that given any cut (X1, X2) in C, either X1 has a 

largest element or X2 has a least element.  Then the real numbers are explained to be a 

linearly ordered set (R, <) which contains the rationals Q as a densely ordered subset and 

which satisfies this continuity requirement. One argues that any two such ordered sets  

(R, <) and (R*, <*) are isomorphic, by mapping each element p of R to the element p* in 

R* having the same left section in the rationals, i.e. {q  ∈ Q : q < p} = {q  ∈ Q: q <*p*}.7 

(One passes from the cut in R determined by p to its restriction to Q and then back to the 

natural extension of the latter to a cut in R* that determines p*).  Finally, Dedekind’s 

construction of such an (R, <) is obtained by taking it to consist of the rational numbers 

together with the numbers corresponding to all those cuts (X1, X2) in Q for which X1 has 

no largest element and X2 has no least element, ordered in correspondence to the ordering 

                                                
7 Dedekind did not himself explicitly state the uniqueness up to isomorphism of this 
structural concept, though it seems that he took it implicitly for granted.  
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of cuts (X1, X2) < (Y1, Y2) when X1 is a proper subset of Y1.  Dedekind himself spoke of 

this construction of R at individual cuts in Q for which X1 has no largest element and X2 

no least element as the creation of an irrational number (ibid., p. 773), though he did not 

identify the numbers themselves with those cuts.8   

 

To sum up, from the point of view of conceptual structuralism and just as with Cantor’s 

construction, Dedekind’s construction and characterization of the continuum is not a 

basic conception but a hybrid of geometric, arithmetic and set-theoretical notions.   

 

3.4 The Hilbertian continuum.  By this is meant the consequences for the straight line 

of the Axioms of Continuity (Axiom Group V) V.1 and V.2 in Hilbert’s Grundlagen der 

Geometrie, whose first edition in 1899 underwent a number of revisions in his lifetime.  

Reference here is to the Tenth Edition as translated into English in Hilbert (1988).9    

 

V.1 (Axiom of measure or Archimedes’ Axiom). If AB and CD are any segments then 

there exists a number n such that n segments CD constructed contiguously from A, along 

the ray from A through B, will pass beyond the point B.  

V.2 (Axiom of line completeness). An extension of a set of points on a line with its order 

and congruence relations that would preserve the relations existing among the original 

elements as well as the fundamental properties of line order and congruence that follows 

from Axioms I-III, and from V1 is impossible.10  (Hilbert 1988, p. 26)    

                                                
8 Incidentally, Cantor (1883) referred to Dedekind’s construction as “eigenartige”, or 
“idiosyncratic” as Ewald (1996) p. 897 translates it.  In Cantor’s further discussion in 
comparison with other constructions of the reals, including his own, he says that 
Dedekind’s has the “undeniable advantage … that every number b corresponds to only a 
single cut.  But this definition has the great disadvantage that the numbers of analysis 
never occur as ‘cuts’, but must be brought into this form with a great deal of artificiality 
and effort.” (Ibid., p. 899) 
9 Seven editions of the Grundlagen der Geometrie appeared in Hilbert’s lifetime.  The 
editions 8-10 (the last in 1968) were edited by Paul Bernays and, as stated in his Prefaces, 
only minor additions and corrections were made there to the body of the text of the 
Seventh Edition; he did, however, contribute a number of supplements to the latter.    
10 What is meant by the properties in question is elaborated in Hilbert (1988) p. 26.  
Incidentally, the Axioms of Continuity were only introduced in the 2nd edition of the 
Grundlagen. 
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From the modern logical point of view, both of these axioms are non-elementary, since 

the first requires quantifying over the natural numbers and the second over arbitrary sets 

of points, taken both syntactically and semantically.  The Archimedean axiom insures 

that if one imposes a system of measurement on any ordered line L relative to some unit 

length and origin O, the points with rational distance from O are dense in L.  The 

completeness axiom is equivalent to the Dedekind continuity condition, that there are no 

gaps in the line.   

 

As with the Euclidean line, the Hilbertian continuum is not conceived of independently 

but only within the framework of plane (and spatial) geometry as a whole.  Thus, from 

the point of view of conceptual structuralism, the Hilbertian conception of the continuum 

is not a basic one but rather is a hybrid of geometrical and set-theoretical notions.  The 

second-order logic required for Hilbert’s group V axioms can be eliminated in favor of a 

first-order axiomatization of geometry, as was done in Tarski’s system; cf. Tarski and 

Givant (1999).  However, the price that is paid thereby is that the continuity axiom is 

replaced by an axiom scheme, and the system, while formally complete, is not 

categorical.  In any case, consideration of such a system is based on primarily logical 

grounds and only secondarily on conceptual grounds. 

 

3.5 The set of all paths in the full binary tree.  The conception of the generation of the 

full binary tree T as obtained from an initial node by successive branching to the left or 

right is practically as basic and clear as that of the natural number sequence.  Denoting 

‘left’ by 0 and ‘right’ by 1, we recognize this as equivalent to the generation of all finite 

sequences of zeros and ones, beginning with the empty sequence.  A path in the full 

binary tree is a subset of T which contains the initial node and contains with each node 

exactly one of its successors; a path is thus represented by an infinite sequence of zeros 

and ones, and every such sequence represents a unique path.  One standard set-theoretical 

conception of the continuum is as the set of all paths in T, or equivalently as the set 2N of 

all functions from N into the set {0, 1}.  However, intuitively, it is natural to think of 

sequences (xn) of natural numbers as being generated by some sort of rule which tells us 



 14 

how, at each n, xn is to be evaluated given the values of xi for all i < n, or more generally 

simply as a rule which provides the value of xn for each n.  On the other hand, the idea of 

a function from N into {0, 1} is based on a quite different intuition, namely as an 

arbitrary many-one correspondence considered extensionally, i.e. independently of how 

the correspondence may be effected, while rules are thought of intensionally, i.e. as 

specific procedures to carry out the requisite evaluations.  Any such rule determines a 

function, but not conversely.  On either view, the conception is of a two-sorted structure 

(N, 2N, Val) where Val(n, x) = xn for x in 2N. 

 

Reflection on the function explanation of  2N leads one to accept the principle that for 

each definite correspondence (i.e., relation) P(n, m) between natural numbers such that 

∀n∃!m P(n,m) there exists a function F: N → {0, 1} such that for every n, m,  

     F(n) = m ↔ P(n, m). 

As with the natural numbers, this leaves open the question which P are definite.  Clearly, 

the relation P(n, m) between arbitrary n ∈ Ν and  m = 0, 1 for which (m = 1 ↔ n is prime) 

is definite, while that for which  (m = 1 ↔ n is the number of grains of sand in a heap) is 

not.  But what about the relation, (m = 1 ↔ the GCH holds at n)?   

 

Appealing as the idea is of an arbitrary path through the binary tree, or an arbitrary 

sequence of 0s and 1s, the problem with this set-theoretical conception of the continuum 

is grasping the meaning of ‘all’ in the description of 2N as consisting of all such 

sequences.  If that meaning is taken to be well-determined, then any correspondence P 

expressed using quantification over 2N is definite, i.e. 2N is a definite totality.  But on the 

face of it that requires a platonist ontology, according to which the totality in question 

somehow exists independently of human conceptions; in that respect it goes beyond 

conceptual structuralism.11  This is not to deny that we can imagine the ideal world in 

                                                
11 The platonism in question pertains only to the existence of the particular set 2N as a 
definite totality independent of human conceptions; similarly for the view of the set of all 
subsets of N as a definite totality, treated next.  Following Bernays (1935) one can be a 
“moderate” platonist via the assumption of only these specific totalities, as opposed to 
being an unrestricted or “absolute” platonist as to the nature of all mathematical objects.  
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which 2N is a definite totality just as we can imagine our physical universe being totally 

bounded in space and in time.  Since the consequent issues are essentially the same as for 

the concept of the set of all subsets of N, I delay taking them up until the end of the next 

section.   

 

3.6 The set of all subsets of the natural numbers.  Given the idea of an arbitrary set X 

of elements of a given set A, considered independently of how membership in X may be 

defined, the purest conception of the continuum in the set-theoretical sense is that of the 

set of all subsets of N, S(N).12  This is a two-sorted structure, (N, S(N), ∈), where ∈is the 

relation of membership of natural numbers to sets of natural numbers.  Two principles are 

evident for this conception, using letters ‘X’, ‘Y’ to range over S(N) and ‘n’ to range over 

N.    

I. Extensionality   ∀X∀Y[ ∀n(n ∈ X ↔ n ∈Y)  → X = Y ]  

II. Comprehension For any definite property P(n) of members of N, 

     ∃X[ ∀n( n ∈X ↔  P(n) ] . 

Again what is problematic here for conceptual structuralism is the meaning of ‘all’ in the 

description of S(N) as the set of all subsets of N.  In the usual set-theoretical view, S(N) 

is a definite totality, so that quantification over it is well-determined and may be used to 

express definite properties P.  But again that requires on the face of it a platonist ontology 

and in that respect goes beyond conceptual structuralism (cf. footnote 11).   The usual 

set-theoretical view of functions as many-one sets of ordered pairs puts 2N in one-one 

correspondence with S(N), by associating with each function F from N to {0, 1) the set X 

of all n such that F(n) = 1; inversely, each member X of S(N) determines the function F 

given by F(n) = 1 ↔ n ∈ X.  But the pre-set-theoretical conceptions of sequence and set 

distinguish these: sequences are given by rules of generation and sets by membership 

conditions, so that every sequence determines a set, but not conversely.  In a sequence we 

step from each term to the next, but a set is just a scattering of natural numbers 

                                                                                                                                            
But Bernays does not try to mark out what such a moderate platonism ought to admit 
with respect to how far such operations on sets may be iterated, if at all.   
12 S(N) is commonly referred to as the power set of N, denoted P(N), though that 
terminology is more appropriately applied to 2N.  
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considered without regard to order.  The correspondence does work for the extensional 

conception of sequences as functions, for which the order in which elements are 

generated is irrelevant, and that serves more generally to put S(A) in one-one 

correspondence with 2A for any set A.    

 

As with 2N in the preceding section, we can certainly conceive of a world in which S(N) 

is a definite totality and quantification over it is well-determined; in that ideal world, one 

may take for the property P in the above Comprehension Principle any formula of full 

second-order logic over the language of arithmetic.  Then a number of theorems can be 

drawn as consequences in the corresponding system PA2, including purely arithmetical 

theorems.  Since the truth definition for arithmetic can be defined in PA2 and transfinite 

induction can be proved in it for very large recursive well-orderings, PA2 goes in strength 

far beyond PA even when that is enlarged by the successive adjunction of consistency 

statements transfinitely iterated over such well-orderings.  What confidence are we to 

have in the resulting purely arithmetical theorems?  There is hardly any reason to doubt 

the consistency of PA2 itself, even though by Gödel’s theorem, we cannot prove it by 

means of any weaker means.  Indeed, the ideal world picture of (N, S(N), ∈) that we have 

been countenancing would surely lead us to say more, since in it the natural numbers are 

taken in their standard comception.  On this account, any arithmetical statement that we 

can prove in PA2 ought simply to be accepted as true.  But given that the assumption of 

S(N) as a definite totality is a purely hypothetical and philosophically problematic one, 

the best we can rightly say is that in that picture, everything proved of the natural 

numbers is true.   

 

All of this and more comes into question when we move one type level up to the structure  

(N, S(N), S(S(N)), ∈1, ∈2) in which Cantor’s continuum hypothesis may be formulated.  

A more extensive discussion of the conception of that structure and the question of its 

definiteness in connection with the continuum problem is given in Feferman (2008). 

 

4. Non-structural and other conceptions of the continuum.  Several other conceptions 

of the continuum have been suggested for comparison with the preceding: (i) 
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phenomenological, (ii) non-standard, (iii) foundational (intuitionistic and predicative), 

and, finally, (iv) physical.  The interesting motivations for each of these aside, they do  

not stand as basic structural conceptions.   

4.1 Phenomenological conceptions.  I shall refer here to only one attempt, that by Weyl 

(1918)⎯whose predicative treatment of the mathematical continuum is taken up 

below⎯to elaborate an intuitive conception of the continuum.13  This is carried out in the 

two final sections of his monograph; quotations are taken from the English translation, 

Weyl (1987).  In the natural effort to somehow firmly root the mathematical continuum 

in experience, Weyl was strongly influenced by Husserl’s phenomenology (1913), to 

which he refers (ibid., p.2), following which he writes that “[o]ur examination of the 

continuum problem contributes to critical epistemology’s investigation into the relations 

between what is immediately (intuitively) given and the formal (mathematical) concepts 

through which we seek to construct the given in geometry and physics.”   

 

Weyl’s point of departure is the following: 

 

In order to better understand the relation between an intuitively given continuum 

and the concept of number … let us stick to time as the most fundamental 

continuum.  And in order to remain entirely within the domain of the immediately 

given, let us adhere to phenomenal time …, i.e. to that constant form of my 

experiences of consciousness by virtue of which they appear to me to flow by 

successively. …  In order to have some hope of connecting phenomenal time with 

the world of mathematical concepts, let us grant the ideal possibility that a rigidly 

punctual “now” can be placed within this species of time and that time-points can 

be exhibited.  Given any two distinct time-points, one is the earlier, the other the 

later.14  (Ibid., p. 88, italics Weyl’s) 

                                                
13 For a fuller account of Weyl’s thoughts and efforts in the phenomenological direction, 
see Bell (2000). 
14 The intuitionist Brouwer also took time as the source of the concept of the continuum 
in his inaugural address (1912), where he talks of the “intuition of two-oneness, the basal 
intuition of mathematics” derived from “the falling apart of moments of life into 
qualitatively different parts, to be reunited only while separated by time, as the 
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In addition, Weyl posits the relation of equality between time intervals A1B1 and A2B2 

where the Ai and Bi are points in time.  But almost immediately he abandons this 

approach as nonsense (p. 90, italics his), because of the difficulty of ascribing precise 

meaning to the experience of the “Now” as a point in time.  He then shifts (pp. 97ff) to a 

proto-mathematical theory taking time spans a, b,… with the relations of equality a = b 

and addition a + b =c as basic, from which the conception of number is to be obtained as 

ratios of time spans.  In the end, though, Weyl is deeply dissatisfied with these efforts and 

concludes by writing: 

 

To the criticism that the intuition of the continuum in no way contains those logical 

principles on which we must rely for the exact definition of the concept “real 

number,” we respond that the conceptual world of mathematics is so foreign to 

what the intuitive continuum presents to us that the demand for coincidence 

between the two must be dismissed as absurd.  Nevertheless, those abstract 

schemata which supply us with mathematics must also underlie the exact science of 

domains of objects in which continua play a role. (Ibid., p. 108) 

 

For a (relatively) recent stimulating comparison of Weyl’s venture with some other 

intuitive conceptions as well as mathematical constructions, see Longo (1999).15  

 

4.2 The continuum in infinitesimal analysis.  Extensive reasoning with infinitesimal 

quantities was ubiquitous in the early development of mathematical analysis and its 

applications, but was subject to puzzles and outright contradictions.  Eventually 

eliminated in the 19th century through the systematic use of the limit concept introduced 

by Cauchy and made precise by Weierstrass, infinitesimals fell by the wayside in proofs, 

though they retain their value as a heuristic to this day.  Robinson (1966) discovered a 

                                                                                                                                            
fundamental phenomenon of the human intellect” [translation from Benacerraf and 
Putnam (1983) p. 80].  This leads Brouwer to treat the continuum not linearly, as in 
Weyl’s attempt here, but rather in terms of sequences in the binary branching tree; cf. sec. 
4.3 below.    
15 See also the essays by Bouveresse, Petitot and Thom in Salanskis and Sinaceur (1993).   
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way to provide a rigorous foundation for certain uses of infinitesimals via a model-

theoretic construction of a proper extension *R of the real number system, in which the 

infinitesimal quantities are those elements whose absolute values lie between 0 and all 

the positive elements of R.  Compared to Cantor’s and Dedekind’s construction of R, 

Robinson’s construction of such *R is relatively sophisticated, but in its use of  model 

theory, relatively simple for that subject.  In addition, from the set-theoretical point of 

view, it is not categorically determined⎯there are many *R, any one of which serves the 

purposes of non-standard analysis.  There is no question that one can develop good 

working intuitions about the use of such *R as in other parts of mathematics; witness its 

many applications subsequent to Robinson’s work.16  But that does not qualify it as a 

basic structural conception; the use of the appellation ‘non-standard’ is an implicit 

recognition of its status. 

 

A quite different approach to infinitesimal analysis using a “nonpunctiform”, “smooth” 

modification Rsm of the real number system was initiated by Lawvere in lectures in 1967 

(cf. Lawvere 1979) and later pursued systematically by Kock (1981) among others; Bell 

(2008) provides an elegant and intuitively motivated exposition.  The infinitesimals in 

this version form a non-trivial set of quantities ε in Rsm whose square is 0; the logic is 

necessarily intuitionistic, since it can be proved for every such ε that it is not the case that 

(ε = 0) or ¬ (ε = 0).  Every point on a curve C has an infinitesimal neighborhood along 

which C is straight; if f is a function on Rsm then for each x, the slope of that straight line 

to its curve at f(x) is the value of the derivative of f at x, and f itself is smooth, i.e. 

infinitely differentiable.  There is an elegant axiomatization of the “smooth world” 

containing Rsm but a proof of its consistency is quite sophisticated⎯via topos 

theory⎯beginning with the category of smooth manifolds (itself defined in terms of our 

“standard” R); in that respect it certainly does not qualify as a basic structural 

conception.17  As with non-standard analysis, smooth infinitesimal analysis has direct 

applications to differential geometry and physics in the cited sources.   

                                                
16 Cf., for example Cutland (1988).  For a recent exposition, see Robert (2003).  
17 Cf. the appendix to Bell (2008) for references to the work producing a model for the 
smooth world.    
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4.3 Two foundational conceptions: intuitionism and predicativism. These are not 

structural conceptions to begin with but rather developments of the continuum within two 

foundational programs.  Both take the intuitive conception of the natural number 

structure and the principle of proof by induction as basic.  The difference is that the 

predicativists (at least those stemming from Poincaré and Weyl) view the natural 

numbers as a definite totality, for which quantification over N is thus definite and 

classical logic is admissible for all arithmetical statements, while the intuitionists view N  

as a potential totality and reject the law of excluded middle as applied to such statements. 

For the predicativists, sets which can be explicitly enumerated, such as the rational 

numbers, are also definite totalities.  Both the intuitionists and the predicativists reject the 

assumption of any completed infinite totalities of uncountable cardinality, and in 

particular the set-theoretical conceptions of 2N and S(N) as definite totalities.  

 

The intuitionists and the predicativists both follow Cantor in the construction of the real 

numbers, namely as fundamental sequences of rational numbers; equality of real numbers 

is also defined the way Cantor did it.  In order to carry this out, in each framework one 

must presume the general notion of sequence of rational numbers, though not the totality 

of such sequences; thus there is no totality of real numbers, only the concept of what it 

means to be a real number.  Moreover, sequences must be regarded intensionally, not as 

functions determined by their values. For the predicativists, one has the usual properties 

of sequences, among them closure under relative arithmetical definability.  However, for 

the development of the theory of real numbers, the intuitionists generally follow Brouwer 

(1927) in interpreting them as (free) choice sequences, of which one has only a finite 

amount of information at any given time.  Thus, for the intuitionists, any total operation 

on choice sequences to the natural numbers is continuous, and that leads one to 

Brouwer’s conclusion that every function of real numbers on a closed interval is 

continuous.  The consequent development of analysis based on the theory of choice 

sequences is thus prima facie in conflict with classical analysis, though if one 

understands the meaning of the terms in the way intended by Brouwer and his followers, 
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there is no direct conflict, only a radically different development.18,19 

 

By contrast, the predicative development leads to a part of classical analysis and is 

nowhere in conflict with it.  The initial redevelopment of analysis on strictly predicative 

grounds was due to Hermann Weyl in his monograph Das Kontinuum (1918), in which 

he showed that all of the classical analysis of pointwise continuous functions can be 

carried out predicatively.20  As explained in Feferman (1988), Weyl’s work can be 

formalized in a 2nd order system, usually denoted ACA0, which is a conservative 

extension of the first order system PA of Peano Arithmetic.  The second order variables 

range over sets of natural numbers, for which the comprehension principle simply asserts 

closure under relative arithmetical definability, while the induction principle says that 

every set which contains 0 and is closed under the successor operation contains all natural 

numbers.  Sequences of natural numbers and thence of rational numbers are then treated 

as sets of pairs.  A system W (so designated in honor of Weyl) was introduced in 

Feferman (1988) to allow more flexible use of various notions of finite type, including 

the type R of real numbers and the type R → R of functions of real numbers.  In W, the 

abstract notion of rule is taken as basic, and sequences are rules which are total on N.  It 

was shown by Feferman and Jäger (1996) that W, too, is conservative over PA.   

 

Though predicativity in principle goes far beyond PA in strength, it turns out in practice 

that the part of mathematics that can be justified on predicative grounds is robustly 

predicative in the sense that if a result can be obtained on those grounds at all, it can 

already be established in a system conservative over PA such as ACA0 or W.   This has 

been verified through a number of case studies: for ACA0 they have been carried out in 

the Reverse Mathematics program introduced by Friedman and extended and exposited in 

detail by Simpson (1999), while for W they have been carried out in my unpublished 

                                                
18 For an introduction to the theory of choice sequences and the intuitionistic 
development of analysis on their basis, see Troelstra and van Dalen (1988), Ch. 12.  
19 For the differing understanding of the terms involved, see Hellman (1989a).   
20 A few years later, Weyl fell under Brouwer’s spell and made his own contributions to 
the intuitionistic approach.  But years later he became quite pessimistic about its 
prospects; cf. Part II of Mancosu (1998) for a full description of Weyl’s intuitionistic 
excursion with relevant articles, and Feferman (2005) p. 601.   
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notes as described in Feferman (1988, 1993).  Roughly speaking, among other things the 

robustly predicative part of mathematics includes the Lebesgue theory of measurable 

functions and integration and various parts of standard functional analysis, such as the 

spectral theory of bounded and unbounded operators on a separable Hilbert space.21 

These case studies led me to the following working hypothesis in Feferman (1988): all of 

scientifically applicable mathematics can be developed in the system W.  Some possible 

counterexamples (in the use, for example, of non-separable spaces or non-measurable 

sets) are discussed in the Postscript to the reprinting of that article in Feferman (1998), 

pp. 281-283, but so far all such seem to be very much at the margin.  The significance of 

this hypothesis for the physical conception of the continuum is taken up next. 

 

4.4 The continuum in natural science.  The indispensability of mathematics to the 

practice of natural science is indisputable, but the reasons for that have been the subject 

of endless philosophical and semi-philosophical discussion (cf., e.g. Steiner (1998, 2005), 

Mickens (1990), Colyvan (2001) and Livio (2009)).22  One view, as encapsulated in the 

famous quotes of Galileo, “Nature’s great book is written in the language of 

mathematics,” and Jeans, “God is a mathematician,” is that mathematics is integrally 

involved in nature itself.  In particular, since the real number structure and its many 

superstructures are at the core of the mathematics that has proved to be indispensable, 

one may read this view as asserting that one version or other of the continuum is part of 

the natural order.  In Science Without Numbers (1980), Field’s ambitious attempt to show 

that a purely nominalistic account can be given of Newtonian gravitational theory, the 

assumption is that Hilbertian geometry in its second-order formulation (via quantification 

over both space-time points and arbitrary space-time regions) holds of the space-time 

structure and thus that numbers need not be assumed for that part of natural science.23  

                                                
21 Subsequent to that work, it has been shown by Ye (2000) that much of that work can 
already be carried out in a constructive subsystem of W, conservative over the much 
weaker system PRA of primitive recursive arithmetic.   
22 I shall not concern myself here with the particular side of this discussion dealing with 
the Quine-Putnam indispensability argument; for that, see the Steiner and Colyvan 
references as well as Resnik (2005), Maddy (1992) and Feferman (1993).   
23 Field hoped to extend that in some way to relativistic gravitational theory, but as far as 
I know, that has not been achieved.  Moreover, as explained in the Malament (1982) 
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But, as we have seen, the Dedekind conception of the continuum is taken as basic for the 

characteristic properties of straight lines in Hilbert’s geometry, and the arithmetical 

continuum can be constructed from that as usual.  In addition, this assumes that the  

Hilbert or Dedekind continuum is somehow embodied in the physical world.24   

 

Given the patent fact that the subject matter of mathematics is of an essentially different 

kind from the subject matter of natural science, and that mathematical knowledge is in 

some sense a priori as opposed to the a posteriori character of scientific knowledge, the 

great difficulty⎯in the words of Wigner (1960)⎯lies in explaining the unreasonable 

effectiveness of mathematics in the natural sciences.  But as Penelope Maddy observed, 

the problem goes still deeper, namely to account for the unreasonable effectiveness of 

highly idealized physical models which are “literally false”, for example in “the analysis 

of water waves by assuming the water to be infinitely deep or the treatment of matter as 

continuous in fluid dynamics or the treatment of energy as a continuously varying 

quantity” (Maddy 1992 p.281).  One could add to such problematic examples the 

assumption of point masses in Newtonian mechanics, and the derivation of planetary 

motions around the sun ignoring all but one planet.25  

 

Whichever view of the relation of mathematics to nature one takes, there is no 

independent physical conception of the continuum on offer in all this, since all the 

mathematics is filtered through the real number system (or Hilbertian geometry as a 

surrogate).  Moreover, I don’t see that any argument can be made from the enormously 

successful applications of mathematics in natural science to the conclusion that one or 

another of the mathematical conceptions of the continuum surveyed above is uniquely 

                                                                                                                                            
review of Science Without Numbers, quantum mechanics poses serious obstacles to 
Field’s program.  In addition, Geoffrey Hellman has pointed out to me that the program 
runs into severe difficulties when applied more generally to state-space theories, 
including Newtonian mechanics of many particles and statistical mechanics. 
24 Incidentally, Dedekind (1872) himself warned against that assumption: “If space has a 
real existence at all it is not necessary for it to be continuous.” (Ewald (1996) p. 772)   
25 Another aspect of “how the laws of physics lie,” namely in the use of ceteris paribus 
assumptions, has been dealt with by Cartwright (1983).   
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singled out as the “real one”.  In any case, the work on the reach of predicative 

mathematics cited at the end of the preceding section shows that the properties of the 

continuum needed for its applications in natural science do not require it to have a 

definite reality in the platonistic sense.   

 

5. Conclusion. Of  all the conceptions of the continuum considered here, only those of 

sec. 3 stand as structural ones, and of those, only 2N and S(N) stand as basic structural 

conceptions.  For, the continuum in Euclidean and Hilbertian geometry is not an isolated 

notion, while the continuum as given by Cantor’s and Dedekind’s construction of the real 

numbers are hybrid conceptions.  The set 2N of all sequences of 0s and 1s isolates the set-

theoretical component of Cantor’s construction, while the set S(N) of all subsets of N 

isolates that of Dedekind’s construction, but both of these lose entirely the basic 

geometric intuition of the continuum.  On the other hand, it does not count against 

Cantor’s and Dedekind’s conceptions of the continuum in the form of the real number 

system R that they are hybrids of geometrical, arithmetical and set-theoretical notions.  

On the contrary, by a kind of miracle of synergy, R has proved to serve together with the 

natural numbers N as one of the two core structures of mathematics; together they are the 

sine qua non of our subject, both pure and applied.  Moreover, Cantor’s construction of R 

is readily reconstrued in foundational programs such as those of intuitionism and 

predicativism that are alternatives to set-theoretical platonism.  These alternative 

programs more fully meet the view of the nature of mathematics advanced by conceptual 

structuralism in sec. 2.  Finally, such questions as Cantor’s continuum hypothesis should 

not take the core role of R in pure and applied mathematics for support as a definite 

mathematical problem, but have to be considered on their own merits and in my view 

only make sense within the foundational framework of set-theoretical platonism.26 
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26 I wish to thank William Demopoulos, José Ferreiros, Marcus Giaquinto, Michel de 
Glas, Geoffrey Hellman, John Kadvany, Hannes Leitgeb, Giuseppe Longo, Wilfried Sieg 
and the two referees for their useful comments on a draft of this article.   
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